請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51111
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝銘倫(Ming-Lun Hsieh) | |
dc.contributor.author | Yi-Ting Chung | en |
dc.contributor.author | 鍾伊婷 | zh_TW |
dc.date.accessioned | 2021-06-15T13:25:23Z | - |
dc.date.available | 2016-07-25 | |
dc.date.copyright | 2016-07-25 | |
dc.date.issued | 2015 | |
dc.date.submitted | 2016-05-16 | |
dc.identifier.citation | [dS87] Ehud de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics, vol. 3, Academic Press Inc., Boston, MA, 1987, p-adic L functions. MR 917944 (89g:11046)
[KY10] Stephen S. Kudla and TongHai Yang, Eisenstein series for SL(2), Sci. China Math. 53 (2010), no. 9, 2275–2316. MR 2718827 (2012b:11068) [Lan87] Serge Lang, Elliptic functions, second ed., Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987, With an appendix by J. Tate. MR 890960 (88c:11028) [Lan94] , Algebraic number theory, second ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723 (95f:11085) [Sch10] Reinhard Schertz, Complex multiplication, New Mathematical Monographs, vol. 15, Cambridge University Press, Cambridge, 2010. MR 2641876 (2011i:11090) [Ser73] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York, 1973, Translated from the French, Graduate Texts in Mathematics, No. 7. MR 0344216 (49 #8956) [Shi94] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kanô Memorial Lectures, 1. [Sil09] Joseph H. Silverman, The arithmetic of elliptic curves, second ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094 (2010i:11005) [SS03] Elias M. Stein and Rami Shakarchi, Complex analysis, Princeton Lectures in Analysis, II, Princeton University Press, Princeton, NJ, 2003. MR 1976398 (2004d:30002) [Sta80] Harold M. Stark, L-functions at s = 1. IV. First derivatives at s = 0, Adv. in Math. 35 (1980), no. 3, 197–235. MR 563924 (81f:10054) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51111 | - |
dc.description.abstract | 這篇論文參考Stark原本的方法,提供了一個在虛二次域上構造Stark unit的方式。
首先介紹Kronecker極限公式。這個公式告訴我們:在虛二次域上,Artin L-函數在零點的微分值,可以寫成橢圓函數帶值在特殊點上。 接著回顧main theorem of complex multiplication及一些Shimura的成果。這些結果可以幫助我們證明:橢圓函數代值在特殊點,實際上可以生成虛二次域上的abelian擴張。 最後證明CM theta函數的distribution relation。從這個關係式,我們可以證明橢圓函數代值在特殊點,其實是虛二次域上abelian擴張的global unit。 | zh_TW |
dc.description.abstract | In this thesis, we provide a construction of Stark units in the case of imaginary quadratic fields following the original approach of Stark.
First, we introduce the Kronecker limit formulas, which show that the derivative of Artin L-function for imaginary quadratic field at s=0 can be written in terms of special values of elliptic functions. We then review the main theorem of complex multiplication and results of Shimura, which enable us to prove special values of elliptic functions actually generate abelian extensions of imaginary quadratic fields. Finally, we prove the distribution relation for special values of CM theta functions, with which we show special values of elliptic functions are indeed global units in abelian extensions of imaginary quadratic fields. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:25:23Z (GMT). No. of bitstreams: 1 ntu-104-R01221011-1.pdf: 1438128 bytes, checksum: ebae023a3ecca77018f2d6d148532801 (MD5) Previous issue date: 2015 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………… i
誌謝…………………………………………………………………………….….. ii 中文摘要………………………………………………………………………….. iii Abstract……………………………………………………………………………. iv 1. Introduction………………………………………………………………… 1 2. Elliptic Curves………………………………………………………………… 4 3. Elliptic Functions (I)………………………………………………………… 6 4. Elliptic Functions (II)………………………………………………………… 12 5. Kronecker Limit Formulas…………………………………………………… 17 6. Complex Multiplication……………………………………………………… 32 7. Elliptic Units and L-values…………………………………………………… 39 References……………………………………………………………………… 48 | |
dc.language.iso | en | |
dc.title | 虛二次域上的Stark猜想 | zh_TW |
dc.title | On Stark Conjecture for Imaginary Quadratic Fields | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊一帆,陳其誠 | |
dc.subject.keyword | Artin L-函數,Complex multiplication,橢圓函數,模形式,Stark unit, | zh_TW |
dc.subject.keyword | Artin L-function,Complex multiplication,Elliptic function,Modular form,Stark unit, | en |
dc.relation.page | 48 | |
dc.identifier.doi | 10.6342/NTU201600206 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-05-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-104-1.pdf 目前未授權公開取用 | 1.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。