Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51090
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益
dc.contributor.authorYu-Chi Liuen
dc.contributor.author劉郁琪zh_TW
dc.date.accessioned2021-06-15T13:25:01Z-
dc.date.available2019-07-06
dc.date.copyright2016-07-06
dc.date.issued2016
dc.date.submitted2016-06-03
dc.identifier.citation[1] I. Rec, “P. 800: Methods for subjective determination of transmission quality,” In- ternational Telecommunication Union, Geneva, 1996.
[2] A. Donnelly and C. Smythe, “A tutorial on the digital audio-visual council (davic) standardisation activity,” Electronics & communication engineering journal, vol. 9, no. 1, pp. 46–56, 1997.
[3] I. Rec, “Itu-t recommendation p.911. subjective audiovisual quality assessment methods for multimedia applications,” Int. Telecomm. Union, Geneva, 1998.
[4] H. Schulzrinne, “Real time streaming protocol (rtsp),” 1998.
[5] Y. Xiao, X. Du, and J. Zhang, “Internet protocol television (iptv): The killer ap- plication for the next-generation internet,” in Institute of Electrical and Electronics Engineers, 2007.
[6] G. O’Driscoll, Next generation IPTV services and technologies. John Wiley & Sons, 2008.
[7] A. Zambelli, “Iis smooth streaming technical overview,” Microsoft Corporation, vol. 3, 2009.
[8] P. Kortum and M. Sullivan, “The effect of content desirability on subjective video quality ratings,” Human factors: The journal of the human factors and ergonomics society, vol. 52, no. 1, pp. 105–118, 2010.
[9] M. Levkov, “Video encoding and transcoding recommendations for http dynamic streaming on the adobeR flashR platform,” White Paper, Adobe Systems Inc, 2010.
[10] A. C. Begen, T. Akgul, and M. Baugher, “Watching video over the web: Part 1: Streaming protocols,” Internet Computing, IEEE, vol. 15, no. 2, pp. 54–63, 2011.
[11] L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for adaptive live video streaming,” in Proceedings of the second annual ACM conference on Multi- media systems, ACM, 2011, pp. 145–156.
[12] A. Finamore, M. Mellia, M. M. Munafo, R. Torres, and S. G. Rao, “Youtube ev- erywhere: Impact of device and infrastructure synergies on user experience,” in Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference, ACM, 2011, pp. 345–360.
[13] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive http stream- ing,” in Proceedings of the second annual ACM conference on Multimedia systems, ACM, 2011, pp. 169–174.
[14] R. K. Mok, E. W. Chan, and R. K. Chang, “Measuring the quality of experience of http video streaming,” in Integrated Network Management (IM), 2011 IFIP/IEEE International Symposium on, IEEE, 2011, pp. 485–492.
[15] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the internet,” IEEE MultiMedia, no. 4, pp. 62–67, 2011.
[16] T. Stockhammer, “Dynamic adaptive streaming over http–: Standards and design principles,” in Proceedings of the second annual ACM conference on Multimedia systems, ACM, 2011, pp. 133–144.
[17] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-L. Zhang, “Unreeling netflix: Understanding and improving multi-cdn movie delivery,” in INFOCOM, 2012 Proceedings IEEE, IEEE, 2012, pp. 1620–1628.
[18] S. Egger, T. Hossfeld, R. Schatz, and M. Fiedler, “Waiting times in quality of ex- perience for web based services,” in Quality of Multimedia Experience (QoMEX), 2012 Fourth International Workshop on, IEEE, 2012, pp. 86–96.
[19] R. K. Mok, X. Luo, E. W. Chan, and R. K. Chang, “Qdash: A qoe-aware dash system,” in Proceedings of the 3rd Multimedia Systems Conference, ACM, 2012, pp. 11–22.
[20] C. Muller, S. Lederer, and C. Timmerer, “An evaluation of dynamic adaptive stream- ing over http in vehicular environments,” in Proceedings of the 4th Workshop on Mobile Video, ACM, 2012, pp. 37–42.
[21] O. Oyman and S. Singh, “Quality of experience for http adaptive streaming ser- vices,” Communications Magazine, IEEE, vol. 50, no. 4, pp. 20–27, 2012.
[22] C. Zhou, X. Zhang, L. Huo, and Z. Guo, “A control-theoretic approach to rate adap- tation for dynamic http streaming,” in Visual Communications and Image Process- ing (VCIP), 2012 IEEE, IEEE, 2012, pp. 1–6.
[23] M. Draxler, J. Blobel, P. Dreimann, S. Valentin, and H. Karl, “Anticipatory buffer control and quality selection for wireless video streaming,” ArXiv preprint arXiv: 1309.5491, 2013.
[24] S. Lederer, C. Mueller, C. Timmerer, C. Concolato, J. Le Feuvre, and K. Fliegel, “Distributed dash dataset,” in Proceedings of the 4th ACM Multimedia Systems Conference, ACM, 2013, pp. 131–135.
[25] C. Sieber, T. Hosfeld, T. Zinner, P. Tran-Gia, and C. Timmerer, “Implementation and user-centric comparison of a novel adaptation logic for dash with svc,” in Inte- grated Network Management (IM 2013), 2013 IFIP/IEEE International Symposium on, IEEE, 2013, pp. 1318–1323.
[26] Y. Cao, X. You, J. Wang, and L. Song, “A qoe friendly rate adaptation method for dash,” in Broadband Multimedia Systems and Broadcasting (BMSB), 2014 IEEE International Symposium on, IEEE, 2014, pp. 1–6.
[27] J. Hao, R. Zimmermann, and H. Ma, “Gtube: Geo-predictive video streaming over http in mobile environments,” in Proceedings of the 5th ACM Multimedia Systems Conference, ACM, 2014, pp. 259–270.
[28] G. Lee, H. Kim, Y. Cho, and S.-H. Lee, “Qoe-aware scheduling for sigmoid op- timization in wireless networks,” Communications Letters, IEEE, vol. 18, no. 11, pp. 1995–1998, 2014.
[29] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran, “Streaming video over http with consistent quality,” in Proceedings of the 5th ACM Multimedia Systems Conference, ACM, 2014, pp. 248–258.
[30] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hobfeld, and P. Tran-Gia, “A survey on quality of experience of http adaptive streaming,” Communications Surveys & Tutorials, IEEE, vol. 17, no. 1, pp. 469–492, 2014.
[31] 3. T. 26.247., Transparent end-to-end packet switched streaming service (pss); pro- gressive download and dynamic adaptive streaming over http (3gp-dash), http: //www.3gpp.org/DynaReport/26247.htm, [Online; accessed December- 2015], 2015.
[32] X. Che, B. Ip, and L. Lin, “A survey of current youtube video characteristics,” MultiMedia, IEEE, vol. 22, no. 2, pp. 56–63, 2015.
[33] I. Cisco, Cisco visual networking index: Global mobile data traffic forecast up- date 2014–2019 white paper, http://www.cisco.com/c/en/us/ solutions/collateral/service-provider/visual-networking- index-vni/white_paper_c11-520862.html, 2015.
[34] M. Draxler, J. Blobel, P. Dreimann, S. Valentin, and H. Karl, “Smarterphones: Anticipatory download scheduling for wireless video streaming,” in Networked Systems (NetSys), 2015 International Conference and Workshops on, IEEE, 2015, pp. 1–8.
[35] J.-M. Jeong and J.-D. Kim, “Effective bandwidth measurement for dynamic adap- tive streaming over http,” in Information Networking (ICOIN), 2015 International Conference on, IEEE, 2015, pp. 375–378.
[36] R. Pantos, “Http live streaming,” 2015.
[37] Q. M. Qadir, A. Kist, and Z. Zhang, “Mechanisms for qoe optimisation of video traf- fic: A review paper,” Australasian Journal of Information, Communication Tech- nology and Applications, vol. 1, no. 1, pp. 1–18, 2015.
[38] M. Reisslein and F. H. Fitzek, Trace files, http://www-tkn.ee.tu- berlin.de/research/trace/ltvt.html, [Online; accessed 02-February- 2015], 2015.
[39] sandvine, Intelligent broadband network: global internet phenomena report, https: //www.sandvine.com/downloads/general/global-internet- phenomena/2015/global-internet-phenomena-report-latin- america-and-north-america.pdf, [Online; accessed November-2015], 2015.
[40] So-net adsl, http://www.so-net.net.tw/, [Online; accessed December- 2015], 2015.
[41] C. Telecom, http://broadband.hinet.net/fttx.do?s=8, [Online; accessed December-2015], 2015.
[42] A. Webster and M. Pinson, The video quality experts group (vqeg), http : / / www.its.bldrdoc.gov/vqeg, [Online; accessed December-2015], 2015.
[43] YouTube, Youtube statistic, https://www.youtube.com/yt/press/zh- TW/statistics.html, [Online; accessed March-2015], 2015.
[44] A. S. Incorporated, F4v/flv technology center, http://www.adobe.com/ devnet/f4v.html, [Online; accessed April-2016], 2016.
[45] Mirosoft, Using the streaming media protocols, https://technet.microsoft. com/zh-tw/library/ee126137(v=ws.10).aspx, [Online; accessed January-2016], 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51090-
dc.description.abstract動態自適性串流已成為現今最熱門的影音串流標準,此方法允許使 用者端動態調整影片解析度;然而,現今大多數文獻提出的品質自適 性策略,主要最佳化使用者品質經驗,尚未解決如何花費最小資源達 到影片播放的流暢與高畫質等特性。本論文探討網路頻寬變動較小的 居家環境,如協定網路電視的網路中,解決最小資源達到最佳化視覺 體驗問題,預設網路頻寬與緩衝時間計算傳送排程以最佳化使用者經 驗。透過上界演算法,找到最少所需花費資源,包含最小緩衝時間、 最小緩衝區與最小使用者可播放影片的網路頻寬;此外,利用最佳品 質演算法、L2H 與 L2HB,根據使用者滿意度標準最佳化傳送排程。 最後,客觀與主觀使用者滿意度實驗,顯示本論文提出的演算法能夠 讓使用者有較佳的視覺體驗。zh_TW
dc.description.abstractDASH (Dynamic Adaptive Streaming over HTTP) is now the most pop- ular standard in video streaming. This method allows the client adjusting the quality of the requested stream dynamically. To the best of our knowledge, most heuristic algorithms proposed for DASH consider how to maintain a good user experience when playing videos; however, minimum resources for smooth and high quality video playback have not been resolved in the previ- ous studies. In this paper, we are interested in transmitting DASH videos over residential networks with small bandwidth (such as DSL based network for IPTV). The goal is to solve the QoE maximization with minimum resource problem and design a transmission schedule for a given transmission rate and initial delay such that QoE metrics are optimized. We show that upper-bound algorithm can find minimum resources (such as the minimum buffer size, ini- tial delay, and the network bandwidth) for video playback. Besides, maxi- mum quality algorithm, L2H with and without buffer size constraint optimize the given QoE metrics. The results of objective and subjective experiments show that the given algorithms achieve better QoE than previous research.en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:25:01Z (GMT). No. of bitstreams: 1
ntu-105-R03525057-1.pdf: 5131418 bytes, checksum: d9834c91c50ca5f4f078be7b795c5a72 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsﰁﰂﰃﰄ口試委員會ﰅ定書 i
致謝 ii
中文ﰀ要 iii
Abstract iv
1 Introduction 1
1.1 ResearchBackgroundandMotivation ................... 1
1.2 ThesisAimsandObjectives ........................ 4
1.3 OrganizationoftheThesis ......................... 6
2 Background and Literature Review 7
2.1 BackgroundofDASHTechnology..................... 7
2.2 QualityofExperienceImpactforDASHStreaming . . . . . . . . . . . . 8
2.3 HTTPAdaptationAlgorithms ....................... 10
3 System Architecture and Problem Definition 15
3.1 SystemArchitecture............................. 15
3.2 ProblemDefinition ............................. 16
4 Algorithms 20
4.1 Upper-boundAlgorithm .......................... 21
4.2 MaximumQoESchedule.......................... 23
4.2.1 MaximumQualityAlgorithm ................... 23
4.2.2 The Feasible Playback Schedule of Algorithm L2H . . . . . . . 24
4.2.3 L2H with the System Buffer Size Constraint (L2HB ) . . . . . . . 27
4.2.4 AnExampleforL2H........................ 29
5 Performance Evaluation 32
5.1 MinimumResourcesforVideoPlayback.................. 32
5.2 ObjectiveQoEEvaluation ......................... 36
5.2.1 PerformanceEvaluationMetric .................. 37
5.2.2 Performance Results for Objective Experiment . . . . . . . . . . 38
5.3 SubjectiveQoEEvaluation......................... 43
5.3.1 VideoMaterials........................... 43
5.3.2 ExperimentalSetup......................... 43
5.3.3 DescriptiveStatistic ........................ 45
5.3.4 QoEResultsforSubjectiveExperiment . . . . . . . . . . . . . . 46
6 Discussion
6.1 RemarksonL2HandL2HB ........................ 48
6.2 More Details for BufferLevel and RateAdaptation . . . . . . . . . . . . 49
6.2.1 AnanalysisofBufferLevel..................... 49
6.2.2 AnanalysisofRateAdaptation................... 50
7 Conclusion and Future Works ................... 52
References ................... 54
dc.language.isoen
dc.title動態自適性串流架構下具 QoE 感知之最佳化排程設計zh_TW
dc.titleOptimal Scheduling of QoE-Aware Dynamic Adaptive Streaming over HTTPen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何建明,李孟晃,張信宏,張恆華
dc.subject.keyword動態與調適性媒體串流,使用者經驗品質,協定網路電視,zh_TW
dc.subject.keyworddynamic adaptive streaming over HTTP (DASH),quality of experience (QoE),IPTV,en
dc.relation.page58
dc.identifier.doi10.6342/NTU201600291
dc.rights.note有償授權
dc.date.accepted2016-06-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved