請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51088
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳中平(Chung-Ping Chen) | |
dc.contributor.author | Zhong-Hua Li | en |
dc.contributor.author | 李鍾華 | zh_TW |
dc.date.accessioned | 2021-06-15T13:24:59Z | - |
dc.date.available | 2017-07-06 | |
dc.date.copyright | 2016-07-06 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-06-05 | |
dc.identifier.citation | [1] “World record solar cell with 44.7% efficiency,” [Online]. Available: http://www.ise.fraunhofer.de/en/press-and-media/press-releases/presseinformationen-2013/world-record-solar-cell-with-44.7-efficiency/
[2] L. Gao, R. A. Dougal, S. Liu, and A. P. Lotova, “Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions,” IEEE Trans. Ind. Electron, vol. 56, no. 5, pp. 1548–1556, May 2009. [3] “Boost converter with MPPT drives isolated solar panel loads,” [Online]. Available: http://www.st.com/st-web-ui/static/active/en/resource/technical/document/design_note/DM00081442.pdf/ [4] Y.-H. Lin, K.-L. Zheng, and K.-H. Chen, “Power MOSFET array for smooth pole tracking in LDO regulator compensation,” in Proc. IEEE Midwest Symp. Circuits and Systems (MWSCAS), Aug. 2007, pp. 554-557. [5] H.-J. Yang, H.-H. Huang, C.-L. Chen, M.-H. Huang, and K.-H. Chen, “Current feedback compensation (CFC) technique for adaptively adjusting the phase margin in capacitor-free LDO regulators,” in Proc. IEEE Midwest Symp. Circuits and Systems (MWSCAS), Aug. 2008, pp. 5-8 [6] C.-H. Lin, K.-H. Chen, and H.-W. Huang, “Low-dropout regulators with adaptive reference control and dynamic push-pull techniques for enhancing transient performance,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1016-1022, Apr. 2009. [7] M. Al-Shyoukh, H. Lee, and R. Perez, “A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1732-1742, Aug. 2007. [8] P. Favrat, P. Deval and M. J. Declercq, “A high-efficiency CMOS voltage doubler,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 410-416, Mar. 1998 [9] J. Starzyk, Y.-W. Jan, and F. Qiu, “A DC-DC charge pump design based on voltage doublers,” IEEE Trans. Circuits Syst. I: Fund. Theory and Appl., vol. 48, no. 3, pp. 350-359, Mar. 2001. [10] C.-Y. Hsieh, P.-C. Fan, and K.-H. Chen, “A dual phase charge pump with compact size,” in Proc. IEEE International Conference on Electronics, Circuits and Systems (ICECS), Dec. 2007, pp. 202-205 [11] Y.-K. Luo, K.-H. Chen, and W.-C. Hsu, “A dual-phase charge pump regulator with nano-ampere switched-capacitor CMOS voltage reference for achieving Low output ripples,” in Proc. IEEE International Conference on Electronics, Circuits and Systems (ICECS), Sep. 2008, pp. 446-449. [12] W.-H. Ki, Y. Lu, F. Su and C.-H. Tsui, “Design and Analysis of On-Chip Charge Pump for Micro-Power Energy Harvesting Applications,” IEEE VLSI and System-on-Chip (VLSI-SoC), Oct. 2011, pp. 374-379. [13] R. B. Ridley, “A new, continuous-time model for current-mode control,” IEEE Trans. Power Electron., vol. 6, no. 2, pp. 271–280, Apr. 1991. [14] C.-F. Lee and P. K. T. Mok, “A Monolithic Current-mode CMOS DC-DC Converter With On-Chip Current-Sensing Technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Nov. 2004. [15] F.-F. Ma, W.-Z. Chen, and J.-C. Wu, “A monolithic current-mode buck converter with advanced control and protection circuit,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1836–1846, Sep. 2007. [16] C.-Y. Leung, P. K. T. Mok, and K.-N. Leung, “A 1-V integrated current mode boost converter in standard 3.3/5-V CMOS technologies,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2265–2274, Nov. 2005. [17] D. Ma, W.-H. Ki, and C.-Y. Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007–1014, Jun. 2003. [18] F. Su, “Topology, Control and Implementation of Switched-Capacitor DC-DC Power Converters for Portable Applications,” HKUST, Aug. 2008. [19] H.-P Le, C.-S. Chae, K.-C. Lee, S.-W. Wang and W.-H. Cho, “A Single-Inductor Switching DC-DC Converter With Five Outputs and Ordered Power-Distributive Control,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007. [20] C. Wang and J. Wu, “Efficiency improvement in charge pump circuits,” IEEE J. Solid-State Circuits, vol. 32, no.6, pp. 852-860, Jun. 1997. [21] J. Yi, F. Su, Y.-H. Lam, W.-H. Ki and C.-Y. Tsui, “An Energy-Adaptive MPPT Power Management Unit for Micro-Power Vibration Energy Harvesting,” IEEE International Symposium on Circuits and Systems (ISCAS), May. 2008, pp. 2570-2573. [22] J.F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol. 11, no. 3, pp. 374-378, Jun. 1976. [23] M. Mihara, T. Terada and M. Yamada, “Negative heap pump for low voltage operation flash memory,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 1996, pp. 76-77. [24] C.-Y. Tsui, H. Shoa, W.-H. Ki and F. Su, ““Ultra-low voltage power management and computation methodology for energy harvesting applications,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2005, pp. 316-319. [25] F. Ueno, T. Inoue, I. Oota and I. Harada, “Emergency power supply for small computer systems,”IEEE International Symposium on Circuits and Systems (ISCAS), Jun. 1991, pp.1065–1068. [26] R. S. Pierre, “Low-power BiCMOS op-amp with integrated current-mode charge pump,” IEEE J. Solid-State Circuits, vol. 35, pp. 1046-1050, Jul. 2000. [27] G. Palumbo, D. Pappalardo and M. Gaibotti, 'Charge-pump circuits: power-consumption optimization,' IEEE Trans. Circuits Syst. I: Fund. Theory and Appl., vol. 49, no. 11, pp. 1535-1542, Nov. 2002. [28] W.-H. Ki, F. Su and C.-Y. Tsui, 'Charge redistribution loss consideration in optimal charge pump design,' IEEE International Symposium on Circuits and Systems (ISCAS), May. 2005, pp. 1895-1898. [29] W.-C. Wu and R. M. Bass, 'Analysis of charge pumps using charge balance,” IEEE Power Electronics Specialists Conference, Jun. 2000, pp. 1491-1496. [30] J.-T. Wu and K.-L. Chang, “MOS charge pump for low-voltage operation,” IEEE J. Solid-State Circuits, vol. 33, pp. 592-597, Apr. 1998. [31] M.-D. Ker, S.-L. Chen, and C.-S. Tsai, “Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS process,” IEEE J. Solid-State Circuits, vol. 41, no. 5, pp. 1100–1107, May 2006. [32] H. Peng, N. Tang, Y. Yang and D. Heo, “CMOS Startup Charge Pump With Body Bias and Backward Control for Energy Harvesting Step-Up Converters,” IEEE Trans. Circuits Syst. I: Regular Papers, vol. 61, no. 6, pp. 1618-1628, Jun 2014. [33] P. H. Chen et al., “Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and -tuned oscillator with fixed charge programming,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1252–1260, May 2012. [34] E. J. Carlson et al., “A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 741–750, Apr. 2010 [35] H. Y. H. Lam, W.-H. Ki and D. Ma, “Loop gain analysis and development of high-speed high-accuracy current sensors for switching converters,” IEEE International Symposium on Circuits and Systems (ISCAS), may. 2004, pp. 828-831. [36] K. Kadirvel et al., “A 300 nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting,” in Proc. ISSCC, 2012, pp. 106–107. [37] Y. M. Sun and X. B. Wu, “Subthreshold voltage startup module for step-up DC-DC converter,” Electron. Lett., vol.46, pp.373–374, 2010. [38] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer, 2001. [39] S. Hsu, A. Brown, L. Rensink, and R. Middlebrook, “Modeling and analysis of switching dc-to-dc converters in constant frequency current programmed mode,” in Proc. IEEE Power Electronics Specialists Conf. (PESC), Jun. 1979, pp. 284–301 [40] H.-W. Huang, K.-H. Chen, and S.-Y. Kuo, “Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications,” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2451–2465, Nov. 2007. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51088 | - |
dc.description.abstract | 傳統的太陽能模組由太陽能細胞串聯組成。當部分遮蔽效應發生時,太陽能模組的整體輸出效率將會嚴重降低,甚至還可能導致整個太陽能模組損毀。本論文中提出一個電壓轉換系統,能夠直接採用太陽能細胞或其他獵能轉換器提供的0.5V作為輸入電壓。此電壓轉換系統實現於TSMC 0.25μm HV CMOS製程。我們使用電荷泵浦將0.5V電壓提升到2.6V以上,接著在經由切換式電感升壓轉換器提升至11V以提供給電池充電使用。
由於太陽能細胞產生的電壓小於電晶體臨界電壓,無法啟動電荷泵浦的開關電晶體,尤其後級電晶體遭遇基底效應會更為嚴重。有文獻提出使用後級提供自偏壓訊號與雙路架構以解決開關控制電壓小於臨界電壓問題,並使用基極偏壓的方式降低臨界電壓。然而大部分電力電子積體電路所採用的CMOS製程並不提供深N型井技術。在第一顆晶片,我們針對這個電路進行修正,提出全P型輸出開關,去減低基底效應。並使用頻率最佳化控制提高整體效能。量測結果顯示此電路最低能在0.42V的輸入電壓之下將電壓提升至2.6V,且功率級轉換效率(Vout,measured/Vout,ideal)達到80%以上。 在第二顆晶片中,我們採用電流模式升壓轉換器將第一級所產生的電壓提升到11V。佈局後模擬顯示此晶片可以在2.6V到4.2V的輸入電壓之下,穩定的輸出11V電壓。且在10mA到200mA輸出電流之下,轉換效率達82%以上。 | zh_TW |
dc.description.abstract | The conventional PV module is composed of the series chains of PV cells. When the shading effect happens, the whole output efficiency of the PV array will reduce severely, it will even damage the PV array. In this thesis, a new power conversion system using the 0.5V voltage generated from PV cell or other energy harvesting transducer as input is proposed. This power conversion system is implement with TSMC 0.25μm CMOS HV process. Firstly, we use the charge pumps to convert the voltage to higher than 2.6V respectively. Then, a switching inductor boost converter raise the voltage to 11V for charging the battery.
Because the voltage generated by single solar cell is lower than the threshold voltage of transistors, it cannot turn on the switch of charge pump, especially for the transistors at latter stage, which suffer from body effect. Some literatures propose the backward control bias and two-branch structure with body bias to solve the threshold voltage problem. However, most of the CMOS processes which are used in power electronics integrated circuit does not provide the deep n-well technique. In our first chip, we modify these architectures and propose the all P-type output switch technique to reduce the body effect. To enhance the whole efficiency, a switching frequency optimization (SFO) control is adopted. The measurement result shows that this chip can provide 2.6V output voltage with 0.42V input voltage, and the conversion efficiency of power stage (Vout,measured/Vout,ideal) is higher than 80%. In the second chip, we adopt a current mode boost converter to rise the voltage generated by first chip to over 11V. the post-layout simulation result shows that this chip can provide 11V output voltage stably under 2.6~4.2V supply voltage. And the output current can be in the range of 10mA to 200mA with efficiency over 82%. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:24:59Z (GMT). No. of bitstreams: 1 ntu-105-R02943163-1.pdf: 4404268 bytes, checksum: 819bb88f517239064bf2f3ddd5e86821 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Categorization of Voltage Regulators 3 1.2.1 Linear Regulators 3 1.2.2 Switching Capacitor Circuits 5 1.2.3 Switching Regulator 7 1.2.4 Comparison 9 1.3 Proposed Power Converting System 10 1.4 Thesis Organization 10 Chapter 2 Fundamentals of Switching Capacitor Converter 12 2.1 Topologies of Charge Pump 12 2.1.1 Voltage Inverter 12 2.1.2 Voltage Doubler 13 2.1.3 Voltage Halver 13 2.1.4 Linear Charge Pump 14 2.1.5 Exponential Charge Pump 16 2.1.6 Fibonacci Charge Pump 17 2.2 Analysis of Dickson Linear Charge Pump 18 2.3 Power Loss in Switching Capacitor 21 2.3.1 Redistribution Loss 21 2.3.2 Conduction Loss 23 2.3.3 Switching Loss 24 2.3.4 Reversion Loss 25 Chapter 3 Backward Control Technique for Low Startup Voltage Charge Pump with Switching Frequency Optimization 27 3.1 Previous Work of Charge Pump 27 3.1.1 Dynamic Control Technique 27 3.1.2 Two Branches Complementary Bias Technique 29 3.1.3 Backward Control with Body Bias Technique 31 3.2 Proposed Charge Pump 33 3.2.1 Circuit of Proposed Charge Pump 33 3.2.2 Simulation and Comparison 35 3.3 Switching Frequency Optimization Method 39 3.3.1 Perturb and Observe (P&O) algorithm 39 3.3.2 Switching Frequency Optimization Architecture 41 3.4 Circuit Level Implementation 42 3.4.1 Ring Oscillator 42 3.4.2 Current Sensor 43 3.5 Layout and Post-Layout Simulation 45 3.5.1 Layout 45 3.5.2 Post-Layout Simulation 46 3.5.3 SFO simulation 48 3.6 Measurement 49 3.6.1 Chip photo 49 3.6.2 Measurement Setup 49 3.6.3 Measurement Results 50 3.6.4 Comparison Table 52 Chapter 4 Current Mode Boost Converter Using High Voltage Transistors 54 4.1 General Specification of DC-DC converter 54 4.1.1 Efficiency 54 4.1.2 Regulation 54 4.1.3 Transient Response 55 4.2 Operation of Switching Boost Converter 57 4.3 Pulse Width Modulation (PWM) Control in Boost Converters 63 4.3.1 Voltage-Mode Boost Converter 64 4.3.2 Current-Mode Boost Converter 66 4.4 Current-Mode Boost Converter Using High Voltage Transistors 70 4.4.1 Architecture 70 4.4.2 Behavior Model Simulation 71 4.5 Circuit Level Implementation 74 4.5.1 Error Amplifier 74 4.5.2 Comparator 77 4.5.3 Oscillator and Ramp Generator 79 4.5.4 Current Sensing circuit 81 4.5.5 V to I Converter 82 4.5.6 Pulse Width Generator 84 4.5.7 Level-Shifting Driver 85 4.5.8 Buffer and Dead-Time Control 87 4.6 Layout and Post-Layout Simulation 88 4.6.1 Layout 88 4.6.2 Post-Layout Simulation 89 Chapter 5 Conclusion and Future Works 93 5.1 Conclusion 93 5.2 Future Works 94 REFERENCE 95 | |
dc.language.iso | en | |
dc.title | 一個低電壓啟動且高升壓倍率之獵能電源轉換系統 | zh_TW |
dc.title | A Low Startup Voltage High Step Up Ratio Energy
Harvesting Power Conversion System | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳耀銘(Yaow-Ming Chen),陳景然(Ching-Jan Chen),劉宗德(Tsung-Te Liu) | |
dc.subject.keyword | 獵能,低電壓啟動,電荷泵浦,升壓轉換器,電流模式控制, | zh_TW |
dc.subject.keyword | energy harvesting,low voltage startup,charge pump,boost converter,current mode control, | en |
dc.relation.page | 101 | |
dc.identifier.doi | 10.6342/NTU201600301 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-06-06 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 4.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。