Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51060Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蔡定平(Din Ping Tsai) | |
| dc.contributor.author | Hao-Tsun Lin | en |
| dc.contributor.author | 林浩存 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:24:33Z | - |
| dc.date.available | 2021-07-06 | |
| dc.date.copyright | 2016-07-06 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-06-15 | |
| dc.identifier.citation | [1] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509 (1968).
[2] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [3] N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-Diffraction-Limited Optical Imaging with a Silver Superlens,” Science 308, 535 (2005). [4] J. B. Pendry, “ A Chiral Route to Negative Refraction,” Science 306, 1353 (2004). [5] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy and X. Zhang, “ Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [6] B. H. Cheng, Y.-C. Lan, D. P. Tsai,“ Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light,” Optics Express 21(12), 14898-14906 (2013). [7] B. H. Cheng, Y. Z. Ho, Y.-C. Lan, D. P. Tsai,“ Optical hybrid-superlens hyperlens for superresolution imaging,” IEEE Journal of Selected Topics in Quantum Electronics 19(3), 4601305 (2013). [8] H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt and A. J. Taylor, “ A metamaterial solid-state terahertz phase modulator,” Nat Photon 3, 148 (2009). [9] W. Cai, U. K. Chettiar, A. V. Kildishev and V. M. Shalaev,“ Optical cloaking with metamaterials,” Nat Photon 1, 224 (2007). [10] S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith and J. Pendry,“ Full-wave simulations of electromagnetic cloaking structures,” Physical Review E 74, 036621 (2006). [11] J. Li and J. B. Pendry,“ Hiding under the Carpet: A New Strategy for Cloaking,” Physical Review Letters 101, 203901 (2008). [12] S. Larouche, Y.-J. Tsai, T. Tyler, N. M. Jokerst and D. R. Smith,“ Infrared metamaterial phase holograms,” Nat Mater 11, 450 (2012). [1] H. Raether, 'Surface plasmons on smooth and rough surfaces and on gratings,' Springer Tracts in Modern Physics 111, 1-133 (1988). [2] R. W. Wood, 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' Philosophical Magazine 4, 396-402 (1902). [3] U. Fano,” The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves),” J. Opt. Soc. Am. 31, 213 (1941). [4] A. Hessel and A. A. Oliner,” A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt. 4, 1275 (1965). [5] E. Kretschm and H. Raether, 'Radiative decay of non radiative surface plasmons excited by light,' Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie A 23, 2135-& (1968). [6] A. Otto, 'Excitation of nonradiative surface plasma waves in silver by method of frustrated total reflection, ' Zeitschrift Fur Physik 216, 398-& (1968). [7] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz,” The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment” J. Phys. Chem. B 107, 668 – 677 (2003). [8] J. P. Kottmann, O. J. F. Martin,” Plasmon resonances of silver nanowires with a nonregular cross section” Phys. Rev. B 64, 235402 (2001). [9] M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hänsch,” Scanning plasmon near-field microscope,” Phys. Rev. Lett. 68, 476 (1992). [10] T. J. Silva and S. Schultz, and D. Weller, “Scanning near-field optical microscope for the imaging of magnetic domains in optically opaque materials,” Appl. Phys. Lett. 65, 658 (1994). [11] Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson,” Scanning plasmon optical microscope,” Appl. Phys. Lett. 66, 3407 (1995). [12] D. P. Tsai, W. C. Lin, 'Probing the near fields of the super-resolution near-field optical structure,' Applied Physics Letters 77(10), 1413-1415 (2000). [13] J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, 'Super-resolution near-field structure and signal enhancement by surface plasmons,' Jpn. J. Appl. Phys. 40, 1831 (2001). [14] W. C. Liu , C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, 'Near-field images of the AgOx-type super-resolution near-field structure,' Appl. Phys. Lett. 78, 685 (2001). [15] C. Haynes, and R. P. Van Duyne,' Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy,' J. Phys. Chem. B 107, 7426 (2003). [16] M. Moskovits,' Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals,' J. Chem. Phys. 69, 4159 (1978). [17] D. L. Jeanmaire, and R. P. Van Duyne,' Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,' J. Electroanal. Chem. 84, 1 (1977). [18] D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen,” Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Materials 11, 860 (1999). [19] S. Sun, G. J. Leggett,” Matching the Resolution of Electron Beam Lithography by Scanning Near-Field Photolithography,” Nano Lett. 4, 1381 (2004). [20] W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang,” Sub-100 nm lithography using ultrashort wavelength of surface plasmons,” J. Vacuum Science & Tech. B 22, 3475 (2004). [21] O.Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski,' Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,' Solar Energy Materials and Solar Cells 37, 337 (1995). [22] M. Westphalen, U. Kreibig, J. Rostalski, H. LuK th, and D. Meissner,” Metal cluster enhanced organic solar cells,” Solar Energy Materials and Solar Cells 61, 97 (2000). [23] H. Kano, and S. Kawata,” Grating-coupled surface plasmon for measuring the refractive index of a liquid sample,” Jpn. J. Appl. Phys. I, 34, 331 (1995) [24] K. Matsubara, S. Kawata, and S. Minami,” Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160 (1988). [25] I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott,” Optical properties of organic dye monolayers by surface plasmon spectroscopy,” J. Chem. Phys. 69, 4001 (1978). [26] W. P. Chen, and J. M. Chen,” Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films,” J. Opt. Soc. Am. 71, 189 (1981) [27] H. Kano, and S. Kawata,” Excitation of surface-plasmon polaritons by a focused laser beam,” Jpn. J. Appl. Phys. 34, 331 (1995). [28] P. R. Villeneuve,” Light beats the diffraction limit,” Phys. World 11, 28 (1998). [29] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. M. Soukoulis,” Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1351 (2004). [30] T. J. Yen1, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, X. Zhang,” Terahertz Magnetic Response from Artificial Materials,” Science 303, 1494 (2004). [1] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla,” Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100, 207402 (2008). [2] C. M. Watts, X. Liu, W. J. Padilla,” Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24, op98 (2012). [3] B. Zhu, C. Huang, Y. Feng, J. Zhao,” Dual Band Switchable Metamaterial Electromagnetic Absorber,” T. Jiang, PIER B, 24 , 121 (2010). [4] C. M. Bingham, H. Tao, X. Liu, R. D. Averitt, X. Zhang, W. J. Padilla,” Planar wallpaper group metamaterials for novel terahertz applications,” Opt. Exp. 16, 18565 (2008). [5] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and haracterization,” Opt. Exp. 16 , 7181 (2008). [6] A. I. M. Ayala,” Using Metamaterial as Optical Perfect Absorber,” Master of Science Thesis, Tufts University, USA (2009). [7] H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev., 78, 241103 (2008). [8] Y. Avitzour, Y. A. Urzhumov, G. Shvets,” Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B., 79, 045131 (2009). [9] X. Liu, T. Starr, A. F. Starr, W. J. Padilla,” Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance,” Phys. Rev. Lett., 104, 207403 (2010). [10] J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, M. Qiu,'High performance optical absorber based on a plasmonic metamaterial,' Appl. Phys. Lett., 96, 251104 (2010). [11] K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, Nat. Comm.,” Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” 2, 517 (2011). [1] I. Maller, M. Hazakis, and R. Srinivasan, “High resolution positive resists for electron beam exposure,” IBM J. Res. Dev. 12, 251 (1968). [2] http://www.zeon.co.jp/Dsf [3] C. C. Chen, C. T. Hsiao, S. L. Sun, K.-Y. Yang, P. C. Wu, W. T. Chen, Y. H. Tang, Y.-F. Chau, E. Plum, G.-Y. Guo, N. I. Zheludev, D. P. Tsai, 'Fabrication of three dimensional split ring resonators by stress-driven assembly method,' Optics Express 20(9), 115-120 (2012). [4] 蕭至廷,「自組裝法製作三維裂環共振器之研究」碩士論文,國立台灣大學物理學研究所 (2012)。 [5] W. T. Chen, C. J. Chen, P. C. Wu, S. Sun, L. Zhou, G.-Y. Guo, C. T. Hsiao, K.-Y. Yang, N. I. Zheludev, D. P. Tsai, 'Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules,' Optics Express 19(13), 12837-12842 (2011). [6] 吳品頡,「奈米共振環於電漿子誘發電磁波穿透現象之研究」碩士論文,國立台灣大學物理學研究所 (2012)。 [7] D. H. Gracias, J. Tien, T. L. Breen, C. Hsu, G. M. Whitesides, “Forming Electrical Networks in Three Dimensions by Self-Assembly,” science 289, 1170 (2000). [8] J. S. Randhawa, W. D. Keung, P. Tyagi, and D. H. Gracias, “Reversible Actuation of Microstructures by Surface-Chemical Modification of Thin-Film Bilayers,” Advance Materials 22, 407, (2010). [9] J. S. Randhawa, T. G. Leong, N. Bassik, B. R. Benson, M. T. Johnmans, and D. H. Gracias,“ Pick-and-Place Using Chemically Actuated Microgrippers,” Journal of The American Chemical Society, 130, 17238 (2008). [10] J. H. Cho, and D. H. Gracias,” Self-Assembly of Lithographically Patterned Nanopartocles,” Nano Letter, 9 (2009). [11] J. H. Cho, T. James, and D. H. Gracias,” Curving Nanostructures Using Extrinsic Stress,” Advance Materials 22, 2320 (2010). [12] O. C. Zienkiewicz, “The finite element method,” New York (1977). [13] COMSOL Multiphysics,' RF module user ’s guide.' | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51060 | - |
| dc.description.abstract | 超穎材料是一種幾乎不存在於自然界的特殊人造材料,此種材料的特性主要取決於其組成單元的結構,而不是完全由其組成的物質所決定。本文利用電子束微影技術於矽基板上製作三維直立式裂環共振器,並利用此三維直立式裂環共振器製作完美吸收體,結構採用金屬介電質金屬的三層結構,最下層鍍金膜反射鏡,中間以ZnS-SiO2作為介電層,最上層以直立式裂環共振器作為與入射光波交互作用之結構,運用此結構的優勢在於直立式裂環共振器可同時吸收入射光電場與磁場所帶有之能量,以增強吸收效果,並將其以十字型對稱排列,使其在垂直入射光下有近乎完美的各向同性,模擬上可達到超過99%的入射光吸收率,並且在TE與TM波斜向入射情況下,正負60度內亦有良好的吸收表現。 | zh_TW |
| dc.description.abstract | Metamaterials are artificial materials which cannot be found in nature. The properties of these materials are not from the component but from the artificial structures in subwavelength scale. In this thesis, we use ebeam lithography to make the three dimensional erected split-ring resonators, and fabricate metamaterial perfect absorber by the three dimensional erected split-ring resonators. We adopt the metal-insulator-metal(MIM) structure. The button layer is a gold layer as a mirror, and the middle layer is ZnS-SiO2. The top layer adopts erected split-ring resonators to serve as the structure interacting with the incident light. The benefit of using the erected split-ring resonators is that the erected split-ring resonators can coupling the energy of electric and magnetic field at the same time which can enhance the absorption. Then we arranged the erected split-ring resonators in cross-shaped which makes this structure isotropic when direct illumination. Also, the electromagnetic response still keeps in a great absorption under both TM- and TE-polarized illumination even through the angle of incidence is greater than 60 degrees. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:24:33Z (GMT). No. of bitstreams: 1 ntu-105-R02245003-1.pdf: 3975695 bytes, checksum: f8fe0ac498b305061bbb0555e156ee5c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員審定書
致謝 I 中文摘要 II 英文摘要 III 目錄 IV 圖目錄 VI 第一章 緒論 1.1 前言 1 1.2 超穎材料發展簡介 1 1.3 研究動機 2 1.4 參考資料 3 第二章 理論背景 2.1 表面電漿基本介紹 5 2.2 金屬的電漿共振 5 2.3 介電物質與金屬材料的表面電漿共振 8 2.4 侷域性表面電漿共振 14 2.5 表面電漿共振應用 15 2.6 超穎材料與裂環共振器 16 2.7 參考資料 19 第三章 超穎材料於完美吸收體的研究與發展 3.1 前言 23 3.2 文獻回顧 23 3.3 參考資料 29 第四章 超穎材料製作與數值模擬方法 4.1 前言 31 4.2 電子束微影技術 32 4.3 直立式三微裂環共振器之製作 37 4.4 樣品製作流程 39 4.5 數值模擬方法 42 4.6 參考資料 46 第五章 各向同性完美吸收體 5.1 前言 48 5.2 結構設計與模擬計算結果 48 5.3 實驗與量測 57 5.4 總結 58 | |
| dc.language.iso | zh-TW | |
| dc.subject | 裂環共振器 | zh_TW |
| dc.subject | 各向同性超穎材料 | zh_TW |
| dc.subject | 電子束微影技術 | zh_TW |
| dc.subject | 各向同性超穎材料 | zh_TW |
| dc.subject | 電漿子超穎物質 | zh_TW |
| dc.subject | 電漿子超穎物質 | zh_TW |
| dc.subject | 裂環共振器 | zh_TW |
| dc.subject | 完美吸收體 | zh_TW |
| dc.subject | 電子束微影技術 | zh_TW |
| dc.subject | 完美吸收體 | zh_TW |
| dc.subject | Isotropic metamaterial | en |
| dc.subject | Metamaterial | en |
| dc.subject | Split-ring resonators | en |
| dc.subject | Perfect absorber | en |
| dc.subject | Ebeam lithography | en |
| dc.subject | Isotropic metamaterial | en |
| dc.subject | Metamaterial | en |
| dc.subject | Split-ring resonators | en |
| dc.subject | Perfect absorber | en |
| dc.subject | Ebeam lithography | en |
| dc.title | 三維奈米裂環共振器於各向同性完美吸收體之研究 | zh_TW |
| dc.title | Isotropic Perfect Absorber Using Vertical Nano Split-Ring Resonators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 藍永強(Yung-Chiang Lan),張允崇(Yun-Chorng Chan) | |
| dc.subject.keyword | 電漿子超穎物質,裂環共振器,完美吸收體,電子束微影技術,各向同性超穎材料, | zh_TW |
| dc.subject.keyword | Metamaterial,Split-ring resonators,Perfect absorber,Ebeam lithography,Isotropic metamaterial, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201600358 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-06-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| Appears in Collections: | 應用物理研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-105-1.pdf Restricted Access | 3.88 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
