請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5100
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏宏宇 | |
dc.contributor.author | Shi-Shiun Chen | en |
dc.contributor.author | 陳仕勳 | zh_TW |
dc.date.accessioned | 2021-05-15T17:51:54Z | - |
dc.date.available | 2015-08-21 | |
dc.date.available | 2021-05-15T17:51:54Z | - |
dc.date.copyright | 2014-08-21 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-14 | |
dc.identifier.citation | [1] S. Zvanovec, P. Pechac, and M. Klepal, “Wireless LAN networks design: site survey
or propagation modeling?” Radioengineering, vol. 12, no. 4, pp. 42–49, 2003. [2] G. Wolfle, R. Wahl, P. Wertz, P. Wildbolz, and F. Landstorfer, “Dominant path pre- diction model for indoor scenarios,” in German Microwave Conference (GeMIC), vol. 27, 2005. [3] A. G. Dimitriou, S. Siachalou, A. Bletsas, and J. N. Sahalos, “An efficient propaga- tion model for automatic planning of indoor wireless networks,” in Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 2010, pp. 1–5. [4] P. Pechac and M. Klepal, “Effective indoor propagation predictions,” in IEEE VTS 54th Vehicular Technology Conference (VTC), vol. 3, 2001, pp. 1247–1250. [5] Fluke Networks, “AirMagnet Survey,” http://www.flukenetworks.com/products/ airmagnet-survey, [Online; accessed 15-July-2014]. [6] MetaGeek, “Ekahau Site Survey,” http://www.metageek.net/products/ekahauss/, [Online; accessed 15-July-2014]. [7] Aerohive Networks, “HiveManager,” http://www.aerohive.com/products/overview/ hive-manager.html, [Online; accessed 15-July-2014]. [8] Motorola, “LanPlanner,” http://www.motorolasolutions.com/US-EN/Business+ Product+and+Services/Software+and+Applications/Network+Design+Software/ LANPlanner_US-EN, [Online; accessed 15-July-2014]. 65[9] Juniper Networks, “RingMaster Software,” http://www.juniper.net/us/en/ products-services/wireless/ringmaster/, [Online; accessed 15-July-2014]. [10] AWE Communications, “WinProp,” http://www.awe-communications.com/, [On- line; accessed 15-July-2014]. [11] A. McGibney, A. Guinard, and D. Pesch, “Wi-Design: A modelling and optimization tool for wireless embedded systems in buildings,” in IEEE 36th Conference on Local Computer Networks (LCN). IEEE, 2011, pp. 640–648. [12] A. Guinard, M. S. Aslam, D. Pusceddu, S. Rea, A. McGibney, and D. Pesch, “De- sign and deployment tool for in-building wireless sensor networks: A performance discussion,” in IEEE 36th Conference on Local Computer Networks (LCN), 2011, pp. 649–656. [13] A. McGibney, S. Rea, M. Lehmann, S. Thior, S. Lesecq, M. Hendriks, C. Gardeux, M. Linh Tuan, F. Pacull, J. Ploennigs, T. Basten, and D. Pesch, “A systematic en- gineering tool chain approach for self-organizing building automation systems,” in 39th Annual Conference of the IEEE Industrial Electronics Society, IECON, 2013, pp. 7696–7701. [14] A. C. Oezluek and K. Kabitzsch, “Optimal device placement planning for wireless building automation systems,” in IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), 2013, pp. 1–4. [15] L. Youngseok, K. Kyoungae, and C. Yanghee, “Optimization of ap placement and channel assignment in wireless lans,” in 27th Annual IEEE Conference on Local Computer Networks (LCN), 2002, pp. 831–836. [16] A. Eisenblatter, H. F. Geerdes, and I. Siomina, “Integrated access point placement and channel assignment for wireless lans in an indoor office environment,” in IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2007, pp. 1–10. 66[17] A. Eisenblatter, H.-F. Geerdes, J. Gross, O. Punal, and J. Schweiger, “A two-stage approach to WLAN planning: Detailed performance evaluation along the pareto frontier,” in Proceedings of the 8th International Symposium on Modeling and Op- timization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2010, pp. 227–236. [18] C. A. Viteri Mera, A. O. Sarchi, and A. A. Rodriguez Rosas, “Optimization of ra- dio network design problems for WLANs using propagation simulations,” in IEEE Latin-America Conference on Communications (LATINCOM), 2012, pp. 1–6. [19] K. Jaffres-Runser, J.-M. Gorce, and S. Ubeda, “Multiobjective QoS-oriented plan- ning for indoor wireless LANs,” in IEEE 64th Vehicular Technology Conference (VTC), 2006, pp. 1–5. [20] ——, “Qos constrained wireless lan optimization within a multiobjective frame- work,” IEEE Wireless Communications, vol. 13, no. 6, pp. 26–33, 2006. [21] A. McGibney, M. Klepal, and D. Pesch, “User demand based WLAN design and optimisation,” in IEEE 65th Vehicular Technology Conference (VTC), 2007, pp. 1101–1105. [22] T. Vanhatupa, M. Hannikainen, and T. D. Hamalainen, “Genetic algorithm to opti- mize node placement and configuration for WLAN planning,” in 4th International Symposium on Wireless Communication System (ISWCS), 2007, pp. 612–616. [23] A. Gondran, O. Baala, A. Caminada, and H. Mabed, “Joint optimization of access point placement and frequency assignment in WLAN,” in 3rd IEEE/IFIP Interna- tional Conference in Central Asia on Internet (ICI), 2007, pp. 1–5. [24] ——, “Interference management in IEEE 802.11 frequency assignment,” in IEEE 67th Vehicular Technology Conference (VTC), 2008, pp. 2238–2242. [25] S. Chieochan, E. Hossain, and J. Diamond, “Channel assignment schemes for infrastructure-based 802.11 WLANs: A survey,” IEEE Communications Surveys & Tutorials, vol. 12, no. 1, pp. 124–136, 2010. 67[26] A. Eisenblatter and H. F. Geerdes, “Wireless network design: solution-oriented modeling and mathematical optimization,” IEEE Wireless Communications, vol. 13, no. 6, pp. 8–14, 2006. [27] S. Bosio, A. Eisenblatter, H.-F. Geerdes, I. Siomina, and D. Yuan, “Mathematical optimization models for WLAN planning,” in Graphs and Algorithms in Communi- cation Networks. Springer, 2010, pp. 283–309. [28] E. Amaldi, A. Capone, M. Cesana, and F. Malucelli, “Optimizing WLAN radio cov- erage,” in IEEE International Conference on Communications, vol. 1, 2004, pp. 180–184. [29] E. Amaldi, A. Capone, M. Cesana, F. Malucelli, and F. Palazzo, “Wlan coverage planning: optimization models and algorithms,” in IEEE 59th Vehicular Technology Conference, vol. 4, 2004, pp. 2219–2223. [30] A. Farsi, N. Achir, and K. Boussetta, “Heuristic approaches for access points deploy- ment and frequency assignment in WLANs,” in Global Information Infrastructure Symposium (GIIS), 2011, pp. 1–7. [31] D. Manjarres, I. Landa-Torres, S. Gil-Lopez, J. Del Ser, and S. Salcedo-Sanz, “A heuristically-driven multi-criteria tool for the design of efficient open WiFi access networks,” in IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 2012, pp. 80–84. [32] A. McGibney, M. Klepal, and D. Pesch, “A wireless local area network modeling tool for scalable indoor access point placement optimization,” in Proceedings of the 2010 Spring Simulation Multiconference, ser. SpringSim ’10. Society for Computer Simulation International, 2010, pp. 163:1–163:8. [33] ——, “Agent-based optimization for large scale WLAN design,” Evolutionary Com- putation, IEEE Transactions on, vol. 15, no. 4, pp. 470–486, 2011. [34] W. Shih-En, C. Chih-Hua, L. You-En, H. Hung-Yun, and S. Hsuan-Jung, “Formulat- ing and solving the femtocell deployment problem in two-tier heterogeneous net- 68works,” in IEEE International Conference on Communications (ICC), 2012, pp. 5053–5058. [35] H. Hung-Yun, W. Shih-En, and C. Cheng-Pang, “Optimizing small cell deployment in arbitrary wireless networks with minimum service rate constraints,” IEEE Trans- actions on Mobile Computing, vol. 13, no. 8, pp. 1801–1815, 2014. [36] P. Wertz, M. Sauter, F. M. Landstorfer, G. Wolfle, and R. Hoppe, “Automatic opti- mization algorithms for the planning of wireless local area networks,” in IEEE 60th Vehicular Technology Conference (VTC), vol. 4, 2004, pp. 3010–3014. [37] V. Erceg, “TGn channel models,” IEEE 802.11 document 03/940r4, Tech. Rep., 2004. [38] G. Breit, H. Sampath, S. Vermani et al., “TGac channel model addendum,” IEEE 802.11 document 09/308r12, Tech. Rep., 2010. [39] R. Porat, S. Young, and K. Doppler, “IEEE P802.11 Wireless LANs, TGah Channel Model Proposed Text,” IEEE 802.11 document 11/968r3, Tech. Rep., 2011. [40] Evolved Universal Terrestrial Radio Access, “Further advance-ments for E-UTRA physical layer aspects,” 3GPP TR 36.814, Tech. Rep., 2010. [41] Xirrus, “Xirrus Wi-Fi Architecture Reference Posters : Wi-Fi Range Demystified,” http://www.xirrus.com/Splash/WiFi-Demystified, [Online; accessed 15-July-2014]. [42] I. T. U. I. T. Rep., “Guidelines for evaluation of radio interface technologies for imt- advanced,” ITU-R M.2135, Tech. Rep., 2009. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5100 | - |
dc.description.abstract | 無線區域網路的設計是一項複雜的作業,許多觀點包括信號覆蓋率、干擾、流量管理都需要納入考量。在這份研究中我們實作了可以幫助無線區域網路設計的WiFi網路規劃平台。這個平台包含三個模組------信號強度模組、接取點布置模組、通道指定模組。信號強度模組可以為運作的接取點產生信號強度分布圖,使設計者能評估布署狀況。接取點選擇模組利用最佳化的方法,從一組候選的接取點中選出適當的接取點組合,以提供足夠的信號覆蓋以及達到設計者對網路吞吐量的要求。通道指定模組則分配可用的通道給被選上的接取點,以最小化同通道上的干擾。此平台以程式語言Matlab和C語言撰寫而成,而在C語言的程式庫中也有應用程式介面提供實際應用。 | zh_TW |
dc.description.abstract | The design of a wireless local area network (WLAN) is a complicated work that demands considerations of many aspects including signal coverage, interference, and traffic management. In this paper we implement a WiFi network planning platform that is able to assist the design of WLAN. The platform consists of three modules: the signal strength module, the AP location planning module, and the channel assignment module. First, the signal strength module generates signal strength maps for operating AP(s) so that a designer can evaluate the deployment. Next, the AP selection module uses an optimization technique to choose APs from a candidate AP set, and the selected APs can provide sufficient coverage and satisfy the throughput requirement specified by designer. At last, the channel assignment module allocates available channel to the selected APs and aims to minimize the co-channel interference of them. The platform is written in Matlab and C, and an application programming interface is also implemented in C-based library for practical application. | en |
dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:54Z (GMT). No. of bitstreams: 1 ntu-103-R01921029-1.pdf: 18495062 bytes, checksum: 23e542e14cd35953395ef7f8ae437394 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Related Work 3 2.1 WiFi Network Deployment Approaches .................. 3 2.2 Optimization Algorithms for WiFi Network Planning ........... 4 3 Propagation Loss Model Survey 9 3.1 Channel Model Survey of IEEE 802 Standards .............. 9 3.1.1 IEEE 802.11n & IEEE802.11ac .................. 9 3.1.2 IEEE 802.11ah ........................... 10 3.1.3 Attenuation Consideration ..................... 13 3.2 Channel Model Survey of Cell Network .................. 14 3.2.1 Test Environment .......................... 14 3.2.2 Propagation Loss Model ...................... 19 4 Problem Formulation 25 4.1 Design Specification ............................ 25 v4.1.1 Environment Data ......................... 25 4.1.2 Candidate Access Point ....................... 26 4.1.3 User Demand ............................ 27 4.1.4 Planning Assumption ........................ 28 4.2 Math Model Formulation .......................... 28 4.2.1 Multi-Criteria MILP Optimization Model ............. 28 4.2.2 Our Optimization Model ...................... 31 5 WiFi Network Planning Simulator and Algorithms 35 5.1 Module Overview .............................. 35 5.2 Signal Strength Module ........................... 36 5.3 AP Selection Module ............................ 39 5.3.1 Phase I: Coverage Prediction .................... 39 5.3.2 Phase II: Station Elimination .................... 40 5.3.3 Phase III: Throughput Guarantee .................. 41 5.4 Channel Assignment Module ........................ 42 5.5 C-based Library Introduction ........................ 43 6 Evaluation 45 6.1 Experiment for Indoor Hotspot Scenario .................. 45 6.1.1 Experiment Setup .......................... 45 6.1.2 Result and Comparison ....................... 49 6.2 Experiment for Real Building Scenario ................... 56 6.2.1 Experiment Setup .......................... 56 6.2.2 Result ................................ 59 7 Conclusion 64 Bibliography 65 | |
dc.language.iso | en | |
dc.title | WiFi網路規劃之接取點布置與通道指定平台 | zh_TW |
dc.title | Access Point Placement and Channel Assignment Platform for WiFi Network Planning | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝宏昀,逄愛君,王志宇,林咨銘 | |
dc.subject.keyword | 802.11,WiFi,網路規劃,最佳化,無線區域網路,接取點, | zh_TW |
dc.subject.keyword | 802.11,WiFi,Network Planning,Optimization,Wireless Local Area Network,WLAN,Access Point,AP, | en |
dc.relation.page | 69 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2014-08-14 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf | 18.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。