Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51008
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭士康
dc.contributor.authorBo-Cian Chenen
dc.contributor.author陳柏芊zh_TW
dc.date.accessioned2021-06-15T13:23:48Z-
dc.date.available2019-07-04
dc.date.copyright2016-07-04
dc.date.issued2016
dc.date.submitted2016-06-24
dc.identifier.citation[1] G. D. Zhou and T. H. Yi, “Recent developments on wireless sensor networks technology for bridge health monitoring,” Math. Probl. Eng., vol. 2013, 2013.
[2] J. Hiner, A. Shenoy, R. Lysecky, S. Lysecky, and A. G. Ross, “Transaction-Level Modeling for Sensor Networks Using SystemC,” 2010 IEEE Int. Conf. Sens. Networks, Ubiquitous, Trust. Comput., pp. 197–204, 2010.
[3] J. L. Hill, “System Architecture for Wireless Sensor Networks,” Spring, p. 186, 2003.
[4] J. P. Lynch, “A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring,” Shock Vib. Dig., vol. 38, no. 2, pp. 91–128, 2006.
[5] A. M. V. Erazo, S. Y. Tang, and Y. Qian, “Wireless Sensor Network Communication Architecture for Wide-Area Large Scale Soil Moisture Estimation and Wetlands Monitoring,” WALSAIP RESEARCH PROJECT TECHNICAL REPORT TR-NCIG-0501, no. 0424546, p. 24, 2006.
[6] H. J. Visser and R. J. M. Vullers, “Wireless sensors remotely powered by RF energy,” Proc. 6th Eur. Conf. Antennas Propagation, EuCAP 2012, pp. 1–4, 2012.
[7] T. Ungan, M. Freunek, M. Muller, W. D. Walker, and L. M. Reindl, “Wireless energy transmission using electrically small antennas,” 2009 IEEE Radio Wirel. Symp., pp. 526–529, 2009.
[8] A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, R. Sorrentino, B. A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, and R. Sorrentino, “Electromagnetic Energy Harvesting and Wireless Power Transmission: A Unified Approach,” Proc. IEEE, vol. 102, no. 11, pp. 1692–1711, 2014.
[9] E. Technology, “RF Energy Harvesting and Wireless Power Powercast Technology Overview,” www.powercasto.com, 2012.
[10] X. Hu and B. Wang, “A Wireless Sensor Network-Based Structural Health Monitoring System for Highway Bridges,” IEEE ICEIT, vol. 28, pp. 193–209, 2015.
[11] S. Kundu, S. Roy, and A. Pal, “A power-aware wireless sensor network based bridge monitoring system,” 2008 16th IEEE Int. Conf. Networks, pp. 1–7, 2008.
[12] S. Yoon, R. Dutta, and M. L. Sichitiu, “Power Aware Routing Algorithms for Wireless Sensor Networks,” 2007 Third Int. Conf. Wirel. Mob. Commun., pp. 15–15, 2007.
[13] Z. A. Eu, H. P. Tan, and W. K. G. Seah, “Routing and relay node placement in wireless sensor networks powered by ambient energy harvesting,” IEEE Wirel. Commun. Netw. Conf. WCNC, pp. 7–12, 2009.
[14] P. Kumar and K. Solomon, “Parameterized Placement Algorithm of f WSN for Struc ctural Health Monitoring g,” ICAES, pp. 273–277, 2013.
[15] B. Li, D. Wang, F. Wang, and Y. Q. Ni, “High quality sensor placement for SHM systems: Refocusing on application demands,” Proc. - IEEE INFOCOM, pp. 1–9, 2010.
[16] A. Nayak, G. Prakash, and A. Rao, “Harnessing wind energy to power sensor networks for agriculture,” Proc. 2014 Int. Conf. Adv. Energy Convers. Technol. - Intell. Energy Manag. Technol. Challenges, ICAECT 2014, pp. 221–226, 2014.
[17] T. Edward, S. R. Sr, and J. Taglione, “A Wireless Sensor Node Powered by a PV / SuperCapacitor / Battery Trio, ” ECE496Y Design Project Course,” 2012.
[18] V. S. Palaparthy, S. Sarik, and A. Mehta, “An Automated , Self Sustained Soil Moisture Measurement System using Low Power Dual Probe Heat Pulse ( DPHP ) Sensor,” IEEE SENSORS, no. m, pp. 5–8, 2015.
[19] X. Jiang, J. Polastre, and D. Culler, “Perpetual environmentally powered sensor networks,” 2005 4th Int. Symp. Inf. Process. Sens. Networks, IPSN 2005, vol. 2005, pp. 463–468, 2005.
[20] J. Alberola, J. Pelegri, R. Lajara, and J. J. Pérez, “Solar inexhaustible power source for wireless sensor node,” Conf. Rec. - IEEE Instrum. Meas. Technol. Conf., pp. 657–662, 2008.
[21] M. Tanevski, a Boegli, and P. -a. Farine, “Power supply energy optimization for ultra low-power wireless sensor nodes,” 2013 IEEE Sensors Appl. Symp. SAS 2013 - Proc., pp. 176–181, 2013.
[22] M. T. Penella, J. Albesa, and M. Gasulla, “Powering wireless sensor nodes: Primary batteries versus energy harvesting,” 2009 IEEE Intrumentation Meas. Technol. Conf. I2MTC 2009, no. May, pp. 1625–1630, 2009.
[23] Texas Instruments, “bq24650: Synchronous Switch-Mode Battery Charge Controller for Solar Power With Maximum Power Point Tracking,” Texas Instruments, data sheet, no. July, p. 33, 2011.
[24] A. Chirap, V. Popa, E. Coca, and D. A. Potorac, “A study on light energy harvesting from indoor environment The autonomous sensor nodes,” 12th Int. Conf. Dev. Appl. Syst., pp. 127–131, 2014.
[25] A. Fahad, T. Soyata, T. Wang, G. Sharma, W. Heinzelman, and K. Shen, “SOLARCAP: Super capacitor buffering of solar energy for self-sustainable field systems,” Int. Syst. Chip Conf., pp. 236–241, 2012.
[26] A. Miah, C. B. Reese, and Q. Song, “2 A , 3 A -Anhydrouridine,” Analog Devices, data sheet, no. 2, pp. 407–408, 1997.
[27] N. O. Content, O. N. The, A. Document, and H. a S. Changed, “Analog Devices Welcomes Hittite Microwave Corporation.” Analog Devices, data sheet
[28] D.- Ghz and C. S. Df, “Monolithic Amplifier,” Analog Devices, data sheet, vol. 0003, no. 718, pp. 2–5, 2002.
[29] L. Error and a D. Converter, “a GENERAL DESCRIPTION,” Analog Devices, data sheet, pp. 1–8, 1996.
[30] S. Mount, M. Schottky, and D. Diodes, “Surface Mount Microwave Schottky Detector Diodes PLx,” Analog Devices, data sheet, pp. 1–18.
[31] J.-P. Curty, N. Joehl, F. Krummenacher, C. Dehollain, and M. J. Declercq, “A model for /spl mu/-power rectifier analysis and design,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 52, no. 12, pp. 2771–2779, 2005.
[32] Analog Devices Inc, “Ultralow Power Boost Regulator with MPPT and Charge Management,” Analog Devices, data sheet, 2015.
[33] “AVX BestCap ® Ultra-low ESR BestCap Ultra-low ESR,” AVX, data sheet
[34] D. Information, “TS3A24159 0 . 3- Ω 2-Channel SPDT Bidirectional Analog Switch Dual-Channel 2 : 1 Multiplexer and Demultiplexer,” Texas Instruments, data sheet, 2015.
[35] D. Information and S. Schematic, “TMP102 Low-Power Digital Temperature Sensor With SMBus TM and Two-Wire Serial Interface in SOT-563,”Texas Instruments, data sheet, 2015.
[36] G. Description and F. B. Diagram, “Accelerometer,” Texas Instruments, data sheet, 2009.
[37] T. Instruments and I. Slas, “MSP430F15x, MSP430F16x, MSP430F161x MIXED SIGNAL MICROCONTROLLER,” Texas Instruments, data sheet, no. October 2002, p. 77, 2011.
[38] G. Ieee and Z. R. F. Transceiver, Texas Instrument data sheet, “Cc2420 Cc2420.”
[39] K. Otani, “Performance analysis of PV systems a review,” 電力人, 第14期, pp.5-9, 2013
[40] M. Antenna and I. Radiator, “FCC 2 . 4 GHz BAND RULES ( POINT ‐ TO ‐ MULTIPOINT ) FCC 2.4 GHz BAND RULES ( POINT ‐ TO ‐ POINT ) Maximum,” FCC Special Rule 2, pp. 3–4.
[41] Y. L. Kuo and K. L. Wong, “Printed Double-T Monopole Antenna for 2.4/5.2 Ghz Dual-Band WLAN Operations,” IEEE Trans. Antennas Propag., vol. 51, no. 9, pp. 2187–2192, 2003.
[42] R. Wallace and S. Dunbar, “Application Note DN034,” TI Antenna, pp. 1–29, 2010.
[43] B. H. J. Visser and R. J. M. Vullers, “RF Energy Harvesting and Transport for Wireless Sensor Network Applications : Principles and Requirements,” Proceedings of the IEEE, pp. 1410 - 1423, vol. 101, no. 6, 2013.
[44] H. Sun, Y. X. Guo, M. He, and Z. Zhong, “Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting,” IEEE Antennas Wirel. Propag. Lett., vol. 11, pp. 929–932, 2012.
[45] A. A. Design, “Design of Dual Polarized Rectenna for Wireless Power Transmission,” IEEE APEMC, pp. 269–271, 2015.
[46] Texas Instruments, “MSP432P401x Mixed-Signal Microcontrollers,” Texas Instruments, data sheet, 2015.
[47] A. Hande, T. Polk, W. Walker, and D. Bhatia, “Indoor solar energy harvesting for sensor network router nodes,” Microprocess. Microsyst., vol. 31, no. 6, pp. 420–432, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/51008-
dc.description.abstract本論文提出一個2.45 GHz頻段的遠距離無線充電架構,包含兩個主要部分:功率傳送源與可汲取能量的無線感測節點。大體而言,此一架構為基於儲存太陽能源且用於無線感測網路的射頻無線充電創新裝置,就作者所知,文獻中尚無接近的設計發表。本論文根據美國聯邦通訊委員會之射頻電波使用規定,提出系統設計、實作和提出硬體選擇的建議。本論文構想的系統使用太陽能板為能源,收集太陽能轉換成為射頻能量,運用陣列天線切換主波束方向,將射頻能量傳送到所安排的感測節點。至於感測節點的接收端,接收功率源的能量後,採用作者提出的充電邏輯,提供直流電給感測器。此一系統之射頻與直流電的轉換效率達20~30%,尚稱有效。zh_TW
dc.description.abstractIn the thesis, we propose a new far-field wireless power transmission system at 2.45 GHz ISM band, including a power source and energy harvesting circuits for wireless sensor nodes. To the best of our knowledge, no publish work has discussed the design that contains both RF power transmitter and receivers for WSNs in a solar based wireless power transmission system. By observing the regulations of Federal Communication Committee (FCC), we have implemented the system and suggested several parameter settings and selections of hardware for design.
Moreover, in most RF harvesting scenarios, RF sources are not steady but solar power density is relatively high, so we make a combination of solar power and RF harvesting in our proposed system. Solar power is collected and then transformed into controllable RF power for transmission in four desired directions. As for wireless sensor nodes, the RF harvesting circuit is designed and implemented with about 20~30% RF-DC conversion efficiency, and a new charging logic is proposed as well. In summary, a whole-system scope of WPT technique is illustrated and can be a good example of the rechargeable WSNs design in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:23:48Z (GMT). No. of bitstreams: 1
ntu-105-R03942001-1.pdf: 2592135 bytes, checksum: 0c19713a1542702181e685171c77de14 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文摘要 I
ABSTRACT II
CONTENTS III
LIST OF FIGURES VI
LIST OF TABLES IX
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Practical Scenario Study 2
1.2.1 Network Topology
1.2.2 Structural Health Monitoring (SHM) in Bridges
1.2.3 Agricultural Monitoring
1.3 Literature Survey 6
1.4 Contributions 8
1.5 Chapter Outline 8
Chapter 2 Function Blocks of System Hardware 10
2.1 System Overview 10
2.2 Power Distributor 12
2.2.1 Solar Panel
2.2.2 Solar Charger
2.2.3 Supercapacitor
2.2.4 Buck (Step-down) Converter
2.2.5 Voltage Controlled Oscillator (VCO)
2.2.6 RF Amplifier
2.2.7 Beam Switch
2.2.8 Power Antenna Array
2.3 Sensor Node 17
2.3.1 Rectenna
2.3.2 Boost (Step-up) Converter
2.3.3 Supercapacitors
2.3.4 Data Management Unit
Chapter 3 Power Requirement Estimation 23
3.1 Solar Power Estimation for the Power Distributor 23
3.2 Duty Cycle Setup for the Sensor Nodes 25
Chapter 4 Wireless Charging 27
4.1 Capacitance for Energy Storages 27
4.2 Charging Logic 29
Chapter 5 System Implementation 32
5.1 Power Distributor 32
5.1.1 Solar Panel with Supercapacitors
5.1.2 Buck (Step-Down) Converter
5.1.3 VCO and RF Amplifier
5.1.4 Butler Matrix Antenna
5.2 Sensor Node 40
5.2.1 Power Antenna
5.2.2 Rectifier
5.2.3 Boost (Step-Up) Converter
5.2.4 Supercapacitors
Chapter 6 Results and Discussions 47
6.1 Validation of Effectiveness of Switched Beams 47
6.2 Validation of Effectiveness of Proposed Charging Logic 51
6.3 System Parameter Adjustments 54
6.3.1 EIRP maintenance of the Power Distributor
6.3.2 Duty Cycle Reduction of the Sensor Nodes
Chapter 7 Conclusions 56
REFERENCES 57
dc.language.isoen
dc.subject無線充電zh_TW
dc.subject天線陣列zh_TW
dc.subject巴特勒矩陣zh_TW
dc.subject整流天線zh_TW
dc.subject無線感測網路zh_TW
dc.subject無線充電zh_TW
dc.subject天線陣列zh_TW
dc.subject巴特勒矩陣zh_TW
dc.subject整流天線zh_TW
dc.subject無線感測網路zh_TW
dc.subjectwireless power transmission WPT)en
dc.subjectwireless sensor network(WSN)en
dc.subjectrectennaen
dc.subjectButler matrixen
dc.subjectantenna arrayen
dc.subjectwireless power transmission WPT)en
dc.subjectwireless sensor network(WSN)en
dc.subjectrectennaen
dc.subjectButler matrixen
dc.subjectantenna arrayen
dc.title基於太陽能及可切換波束之多感測節點無線充電系統zh_TW
dc.titleA Wireless Power Transmission System Based on Solar Power and Switched Beam for Charging Multiple Wireless Sensor Nodesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳士元,賴明佑
dc.subject.keyword無線充電,無線感測網路,整流天線,巴特勒矩陣,天線陣列,zh_TW
dc.subject.keywordwireless power transmission WPT),wireless sensor network(WSN),rectenna,Butler matrix,antenna array,en
dc.relation.page60
dc.identifier.doi10.6342/NTU201600460
dc.rights.note有償授權
dc.date.accepted2016-06-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved