請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/509
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林增毅(Tzeng-Yih Lam) | |
dc.contributor.author | Wei-Te Lien | en |
dc.contributor.author | 連維得 | zh_TW |
dc.date.accessioned | 2021-05-11T04:28:24Z | - |
dc.date.available | 2021-05-11T04:28:24Z | - |
dc.date.issued | 2019 | |
dc.date.submitted | 2020-06-15 | |
dc.identifier.citation | 王子定、郭寶章(1980)松鼠對臺灣經濟林木之為害。科學發展月刊8(6):527-550。 朱紀實(1986)臺灣杉、柳杉和杉木內皮化學成分與松鼠危害之相關性。國立臺灣大學森林環境暨資源學系碩士論文。63頁。 郭寶章(1957)台灣松鼠為害林木之初步調查。國立臺灣大學農學院實驗林研究報告第12號。 郭寶章(1984)松鼠害對造林木生長及木材損害之影響。國立臺灣大學農學院實驗林研究報告第149號。 郭寶章(1985)台灣赤腹松鼠對於松林為害及其防除之造林學的研究。國立臺灣大學農學院研究報告第二十五卷第二號。 郭寶章、劉炯錫、江燕飛(1990)松鼠為害對杉木與柳杉造林木材質之影響。臺大實驗林研究報告4(2):117-136。 陳朝圳、陳建璋(2015)森林經營學。正中書局417頁。 馮豐隆、詹明勳(2005)年輪學應用於森林與環境的關係。林業研究季刊27(3):37-50。 黃育歆(2014)溪頭三種林相之土壤性質、團粒穩定度和氮磷劃分研究。國立臺灣大學生物資源暨農學院農業化學系碩士論文。91頁。 劉宣誠(1957)颱風危害林木之調查(第一報),黛娜及芙瑞達之危害。臺大實驗林林業叢刊16號。 劉業經、呂福原、歐辰雄(1994)臺灣樹木誌。925頁。 蔡輝(1967)林木之風害。臺大實驗林通訊(13):20-24。 蔡輝(1968)臺大實驗林歷年來林木颱風災害調查。臺大實驗林通訊(16):6-10。 鄭景鵬、楊勝驛、王亞男、蔡明哲、邱祈榮(2014)溪頭地區柳杉長期樹高生長與胸徑-樹高曲線之研究。臺大實驗林研究報告28(1):17-29。 鄭景鵬、衛強、曹崇銘、楊勝驛(2018)溪頭地區不同齡級柳杉人工林最大樹高與林分樹冠受損預測之研究。臺大實驗林研究報告32(1):37-50。 賴怡蓉(2011)應用生長模式於紅檜及柳杉人工林單木生長之探討。國立中興大學森林學系研究所碩士學位論文。66頁。 鍾智昕(2005)臺灣中部塔塔加地區臺灣雲杉人工林之樹幹解析研究。國立臺灣大學森林環境暨資源學系碩士論文。62頁。 謝依達、吳守從、鄭祖安、魏浚紘、鍾玉龍、陳建璋(2013)氣象因子對臺東地區柳杉與樟樹人工林生長之影響。作物、環境與生物資訊10:209-216。 魏聰輝、簡文村(1989)從最大風速特性檢討韋恩颱風對臺大實驗林林木之危害。臺大實驗林研究報告3(4):21-28。 Backmann, P. (1971) Barking damage by squirrels in 1969 in Canton berne. Schweizerische Zeitschrift für Forstwesen 122(4):164-180. Carmean, W. H. (1972) Site index curves for upland oaks in the central states. Forest Science 18(2): 109–120. Christian, S., G. G. Timothy (2013) A stochastic algorithm for reconstructing tree height growth with stem analysis data. Forest Biomass Conference. Faculty of Forestry, Poznan University of Life Sciences. Poznan, Poland. October 7, 2013. Dyer, M. E., R. L. Bailey (1987) A test of six methods for estimating true heights from stem analysis data. Forest Science 33: 3-13. Eiberle, K., F. Ziegler (1967) Barking damage by squirrels. Schweizerische Zeitschrift für Forstwesen 118(11): 713-723. Fabbio, G., M. Frattegiani and M. C. Manetti (1994) Height estimation in stem analysis using second differences. Forest Science 40(2): 329-340. Hadley Wickham (2018). modelr: Modelling Functions that Work with the Pipe. R package version 0.1.2. https://CRAN.R-project.org/package=modelr Irving, F. D., J. R. Beer (1963) A six year record of sugar maple bark stripping by gray squirrels in Minnesota Oak-maple stand. Journal of Forestry 61(7): 508-511. Kariuki, M. (2002) Height estimation in complete stem analysis using annual radial growth measurements. Forestry 75(1): 63-74. Kershaw, J. A., Jr., M. J. Ducey, T. W. Beers and B. Husch (2016) Forest Mensuration. 5th ed. John Wiley Sons, Ltd. 591pp. Kilgour, B. A. (1982) A yield model for uneven-aged messmate stands of south west Victoria. M. Sc thesis, University of Melbourne. 127pp. Mitchell, A.(2005): The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements and Statistics. Redlands: ESRI Press. Mlodziansky, A. K. (1898) Measuring the forest crop. USDA Div. For. Bull. 20. 71pp. Newberry, J. D. (1978) Dominant height growth models and site index curves for site-prepared slash pine plantations in the lower Coastal Plain of Georgia and North Florida. M. S. thesis, University of Georgia. 47pp. Rayner, M. E. (1991) Estimation of true height from karri (Eucalyptus diversicolor ) stem analysis. Australian Forestry 54(1/2): 105-108. Richards, F. J. (1959) A flexible growth function for empirical use. Journal of Experimental Botany 10: 290-300. Ryu, E. (1968) Virulence diminution of new castle disease virus following damage through squirrel. Chinese Journal of Microbiology 1: 145. Subedi, N., M. Sharma (2010) Evaluating height-age determination methods for jack pine and black spruce plantations using stem analysis data. Northern Journal of Applied Forestry 27(2): 50-55. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/handle/123456789/509 | - |
dc.description.abstract | 本研究以國立臺灣大學生物資源暨農學院實驗林管理處所轄溪頭營林區2 林班49-1 號造林地試驗區中的柳杉林分為研究材料。本研究之目的為,第一為對樣木進行樹幹解析,再以樹高估算方法估算樹高值,並以Richards 生長模式模擬樹高生長結果,建立柳杉健全木與鼠害木的樹高生長模型,比較兩者在樹高生長上之差異,第二為建立鼠害快速目測評估機制,評估鼠害之空間分佈與嚴重程度,透過林分視覺化系統呈現此研究區域中之松鼠為害情形。 研究結果顯示以三種樹高估算方法(Graves、Lenhart’s、Carmean’s)之樹高估算結果建立健全木之樹高生長模型,樹高生長率最大值在2 年內達到最高,顯示柳杉於生長初期即能達到最高生長率。鼠害木樹高生長停滯的年齡較健全木生長停滯的年齡晚,顯示鼠害造成林木樹高生長延遲。樹高生長模型參數之信賴區間在Lenhart’s 與Carmean’s 的預估結果所建立之樹高生長模型中近乎相同,顯示此兩種樹高生長模型高度重合。樹高估算方法的預估結果以Graves 方法高Lenhart’s 與Carmean’s 方法。 鼠害調查研究結果顯示,此區鼠害木百分比高達80.98% (± 7.65%),其林分為易受害之柳杉純林,樣木遭受鼠害的比率由試驗區西南方向東北方遞增。以樹冠顏色來判斷鼠害走向,顯示鼠害發生的走向可能由試驗區西南方向東北方移動。受鼠害影響程度以樣區6 較輕微,樣區4、樣區5 較嚴重。樣區6、樣區7樣木重複遭受鼠害之比率較高。樣區4 鼠害木百分比最高,亦具有最多的鼠害分岔,顯示樣木重複受害之比率最高,且鼠害規模較大。鼠害分岔之高度有由南向北、由西向東增加之趨勢,從木材利用的角度來看,試驗區西南部的可用材少於試驗區東北部。以林分視覺化系統展示鼠害分佈之情形,可以看出鼠害分岔高度越高之樣區,其樹冠層佔樹高的百分比越低。使用林分視覺化系統對於評估林分中之鼠害情形將更有效與準確。 | zh_TW |
dc.description.abstract | A Japanese cedar (Cryptomeria japonica) plantation in the 49-1 Forest Stand in the NTU Experimental Forest was studied. The purposes of this study were two-folds. Firstly, sampled trees were felled and stem analysis were carried out, tree height estimation methods were used to estimate tree height at each given age, and Richards’ growth model was used to model tree height growth for healthy trees and squirrel damaged trees, which differences in tree height growth between the two were compared. Secondly, a rapid visual evaluation mechanism for squirrel damage was established, spatial distribution and severity of squirrel damage of the forest stand were assessed, and the Stand Visualization System was used to present the conditions of squirrel damage in the research area. Results compared estimation of tree height between three height estimation methods (namely, Graves, Lenhart's, Carmean's). The estimated heights were successfully used to establish height growth models of healthy and squirrel damaged trees. The age for the fitted tree height growth curves to reach their highest growth rate was between 0 and 2 years old suggesting that Japanese cedar reached its highest growth rate in early development stage. The age at which height growth stagnate for squirrel damaged trees was later than that of healthy trees indicating that squirrel damage caused delay in tree height growth. The confidence intervals of the parameters of the fitted tree height growth models were almost the same between the two tree height growth models built from Lenhart ’s and Carmean ’s estimates, showing that the two fitted tree height growth models were highly coincident. The predictions from the tree height growth model fitted with height estimated by the Graves’ method was higher than that of Lenhart ’s and Carmean ’s methods. The results of the squirrel damage assessment showed that percentage of squirrel damage trees in this area was as high as 80.98% (± 7.65%). This forest stand is vulnerable because of its pure Japanese cedar plantation. The rate of squirrel damage increased from southwest to northeast of the forest stand. Judging the direction of squirrel damage by the color of the tree crown showed that the trend of squirrel damage might move from the southwest to the northeast of the forest stand. The impact of squirrel damage was light in sample plot 6, whereas sample plots 4 and 5 were more serious. The sample area 6 and the sample area 7 have a higher rate of repeated squirrel damage. Sample area 4 had the highest percentage of squirrel damage, and also had the largest number of branching due to squirrel damage indicating that the rate of repeated damage to sample trees was the highest and the scale of squirrel damage was relatively large. The height of the squirrel damage bifurcation tended to increase from the south to the north and from the west to the east. From the perspective of wood utilization, available materials in the southwest of the forest stand were less than those in the northeast of the forest stand. Using the Stand Visualization System to display distribution of squirrel damage, it could be seen that the sample plots with higher squirrel damage bifurcation height had lower percentage of its canopy layer in the tree height. The use of Stand Visualization Systems is more effective in assessing squirrel damage in stands. | en |
dc.description.provenance | Made available in DSpace on 2021-05-11T04:28:24Z (GMT). No. of bitstreams: 1 ntu-108-R06625029-1.pdf: 2920333 bytes, checksum: b8d3ef1e02d6aab81b9809150f3f1304 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 目 錄 誌謝 ⅰ 中文摘要 ⅱ 英文摘要 ⅲ 第一章 研究動機與目的 1 第二章 相關理論與文獻回顧 3 第一節 樹幹解析之應用 3 第二節 樹幹解析作業流程 4 第三節 以樹幹解析重建樹高生長之估算方法 6 第四節 樹高生長估算方法相關研究 13 第五節 松鼠危害對於林木生長之影響 16 第三章 材料與研究方法 17 第一節 柳杉的樹種介紹 17 第二節 研究區域概況 17 第三節 研究方法 18 第四章 研究結果 27 第一節 以三種樹高估算方法建立樹高生長模型 27 第二節 鼠害空間分布與嚴重程度 36 第五章 討論 42 第一節 以三種樹高估算方法建立樹高生長模型 42 第二節 鼠害空間分佈與嚴重程度 44 第六章 結論與建議 48 引用文獻.. 51 | |
dc.language.iso | zh-TW | |
dc.title | 松鼠為害對溪頭地區柳杉人工林樹高生長之影響及其空間分佈 | zh_TW |
dc.title | The Effect of Squirrel Damage on Height Growth and its Spatial Distribution in Xitou Japanese Cedar (Cryptomeria japonica) Plantation | en |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏添明(Tian-Ming Yen),王介鼎(Chieh-Ting Wang) | |
dc.subject.keyword | 樹高生長模型,樹高估算方法,鼠害空間分佈,鼠害快速評估機制, | zh_TW |
dc.subject.keyword | tree height growth model,tree height estimation method,squirrel damage spatial distribution,squirrel damage rapid visual evaluation mechanism, | en |
dc.relation.page | 53 | |
dc.identifier.doi | 10.6342/NTU202001011 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2020-06-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf | 2.85 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。