Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50976
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江金倉
dc.contributor.authorChi-Hua Wangen
dc.contributor.author王啟樺zh_TW
dc.date.accessioned2021-06-15T13:10:10Z-
dc.date.available2026-06-27
dc.date.copyright2016-07-04
dc.date.issued2016
dc.date.submitted2016-06-28
dc.identifier.citationBuckley, J. and James, I. (1979). Linear regression with censored data. Biometrika. 66, 429-436.
Berkson, J. and Gage, R. P. (1952). Survival curve for cancer patients following treatment. J. Amer. Statist. Assoc. 47, 501-515.
11
Chen, M. H. , Ibrahim, J. G., and Sinha, D. (1999). A new Bayesian model for survival data with a surviving fraction. J. Amer. Statist. Assoc. 94, 909-919.
Dabrowska, D. M., and Doksum, K. A. (1952). Estimation and Testing in the Two-Sample Generalized Odds-Rate Model. J. Amer. Statist. Assoc. 83, 744-749.
Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics. 38, 1041-1046.
Kim, S., Xi, Y., and Chen, M. H.(2009). A new latent cure rate marker model for survival data. Ann. Appl. Stat. 3, 1124-1146.
Kuk, A. Y. C. and Chen, C. H. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika. 79, 531-541.
Mao, M. and Wang, J.L. (2010). Semiparametric efficient estimation for a class of generalized proportional odds cure models. J. Amer. Statist. Assoc. 105, 302-311.
Peng, Y., Dear, K. B. G., and Denham J. W.(1998). A generalized F mixture model for cure rate estimation. Stat. Med. 17, 813-830.
Sy, J. P. and Taylor, J. M. G. (2000). Estimation in a Cox proportional hazards cure model. Biometrics 56, 227-236.
Tsodikov, A. (1998). A proportional hazards model taking account of long-term survivors. Biometrics. 54, 1508-1516.
Yakovlev, A.Y., Asselain, B., Bardou, V. J., Fourquet, A., Hoang, T., Rochefediere, A., and Tsodikov, A. D. (1993). A Simple Stochastic Model of Tumor Recurrence and Its Appli- cations to Data on pre-menopausal Breast Cancer. In Biometrie et Analyse de Dormees Spatio Temporelles, 12 (Eds. B. Asselain, M. Boniface, C. Duby, C. Lopez, J.P.Masson, and J.Tranchefort). Socit Francaise de Biomtrie, ENSA Renned, France, 66-82.
Yakovlev, A. Y. and Tsodikov, A. D. (1996). Stochastic Models of Tumor La- tency and Their Biostatistical Applications, Singapore: World Scientific.
Yin, G. and Ibrahim, J. G. (2005). Cure rate models: a unified approach. Can. J. Stat. 33, 559-570.
Zeng, D., Yin, G., and Ibrahim, J. G. (2006). Semiparametric transformation models for survival data with a cure fraction. J. Amer. Statist. Assoc. 101, 670-684.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50976-
dc.description.abstract對於包含治癒情形的存活資料,本文章提出更一般的半參數併發時間治癒模型,不但具有對於癌症併發機制的生物意義,更同時包含比例風險模式與比例贏輸比模式。當中提出的指標係數的擬積分最小平方估計式具有一致性以及漸進常態性,計算面上更提供有效率的演算法。另外對於併發時間函數之估計,給出擬最小平方估計與動差估計兩種形式。對於提出的估計式,我們執行了豐富的數值模擬去檢驗其在有限樣本下的表現。zh_TW
dc.description.abstractFor survival data with a cure fraction, we propose a general semiparametric model which is derived from the biological process of cancer-relapse mechanism and includes both the mixture cure models and promotion time cure models as two special cases. The pseudo integrated least squares estimators (PILSEs) of index coefficients are shown to be consistent and asymptotically normal and
an efficient computing algorithm is proposed to calculate the PILSEs of index coefficients and the moment-type estimators of promotion time function. Simulation studies are conducted to examine the finite-sample properties of the proposed estimators.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:10:10Z (GMT). No. of bitstreams: 1
ntu-105-R03246008-1.pdf: 2284820 bytes, checksum: 97cfe721a89c8778fd25af928ae5b901 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents1 Introduction (1)
2 Estimation (5)
2.1 Background (6)
2.2 Estimation of Index Coefficients (7)
2.3 Estimation of Promotion Time Function (9)
3 Large Sample Properties (11)
3.1 Asymptotic Normality of Coefficient Estimators (11)
4. Monte Carlo Simulations (15)
5 Reference (18)
A Appendix (20)
dc.language.isoen
dc.subject一致性zh_TW
dc.subject漸進常態zh_TW
dc.subject併發時間治癒模型zh_TW
dc.subject單指標存活模型zh_TW
dc.subject單指標存活模型zh_TW
dc.subject一致性zh_TW
dc.subject漸進常態zh_TW
dc.subject併發時間治癒模型zh_TW
dc.subjectpromotion time cure modelen
dc.subjectasymptotic normalityen
dc.subjectconsistencyen
dc.subjectsingle-index survival modelen
dc.subjectpromotion time cure modelen
dc.subjectasymptotic normalityen
dc.subjectconsistencyen
dc.subjectsingle-index survival modelen
dc.title併發時間治癒模型之估計zh_TW
dc.titleEstimation of a General Semiparametric Promotion Time Cure Modelen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃禮珊,鄭又仁
dc.subject.keyword漸進常態,一致性,單指標存活模型,併發時間治癒模型,zh_TW
dc.subject.keywordasymptotic normality,consistency,single-index survival model,promotion time cure model,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201600515
dc.rights.note有償授權
dc.date.accepted2016-06-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
顯示於系所單位:應用數學科學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved