請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50973完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江金倉 | |
| dc.contributor.author | Shih-Wei Chen | en |
| dc.contributor.author | 陳世緯 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:09:59Z | - |
| dc.date.available | 2026-06-27 | |
| dc.date.copyright | 2016-07-04 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-06-28 | |
| dc.identifier.citation | Bergeron, P. J., Asgharian, M., and Wolfson, D. B. (2008). Covariate bias induced by length-biased sampling of failure times. J. Amer. Statist. Assoc. 103 737-742.
Chan, K. C. G. (2013). Survival analysis without survival data: connecting lengthbiased and case-control data. Biometrika 100 764-770. Chan, K. C. G., Chen, Y. Q., and Di, C. Z. (2012). Proportional mean residual life model for right-censored length-biased data. Biometrika 99 995-1000. Chan, K. C. G. and Qin, J. (2015). Rank-based testing of equal survivorship based on cross-sectional survival data with or without prospective follow-up. Biostatistics 16 772-784. Chan, K. C. G. and Wang, M. C. (2012). Estimating incident population distribution from prevalent data. Biometrics 68 521-531. Chiang, C. T. and Huang, M. Y. (2012). New estimation and inference procedures for a single-index conditional distribution model. J. Multivariate Anal. 111 271-285. Han, A. K. (1987). Non-parametric analysis of a generalized regression model. J. Econometrics 35 303-316. Khan, S. and Tamer, E. (2007). Partial rank estimation of duration models with general forms of censoring. J. Econometrics 136 251-280. Kosorok, M. R. (2008). Introduction to empirical processes and semiparametric inference. Springer, New York. McLaughlin, K. A., Green J. G., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., and Kessler, R. C. (2010). Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication II: associations with persistence of DSM-IV disorders. Arch Gen Psychiatry 72 609-630. Neumeyer, N. (2004). A central limit theorem for two-sample U-processes. Statist. Probab. Lett. 67 73-85. Oakes, D. and Dasu, T. (1990). A note on residual life. Biometrika 77 409-410. Prentice, R. L. and Pyke R. (1979). Logistic disease incidence models and case-control studies. Biometrika 66 403-411. Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator. Econometrica 61 123-137. Sherman, R. P. (1994). Maximal inequalities for degenerate U-processes with applications to optimization estimators. Ann. Statist. 22 439-459. Wang, S. H. and Chiang, C. T. (2016). Concordance-gradient-based estimation for the optimal sufficient dimension reduction score. Technical report | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50973 | - |
| dc.description.abstract | This article develops new approaches to estimate survival parameters based on two types of survival data without collecting survival times. The first one consists of incident and prevalent covariates and the other is a prevalent cohort sample with only covariates and truncation time. Our research aims to identify the effects of covariates on a failure time through more general single-index survival regression models. Under the assumption of covariate-independent truncation, the density ratio of incident and prevalent covariates and the hazard function of an observed truncation time are shown to be monotonic functions of the single-index in the proposed survival regression models. In light of these features, the rank correlation estimation technique can be naturally applied to estimate the index coefficients. Thus, existing theoretical frameworks can be used to establish the consistency and asymptotic normality of the proposed maximum rank correlation estimators. We further conduct a series of
simulations to investigate the finite-sample performance of the estimators. In addition, our methodological ideas are illustrated by data from the National Comorbidity Survey Replicate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:09:59Z (GMT). No. of bitstreams: 1 ntu-105-R03246005-1.pdf: 712062 bytes, checksum: 5caceda20eacb9658a56744ebbe7c271 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Estimation for Incident and Prevalent Covariates 5 3 Estimation for Prevalent Cohort Data without Follow-Up 8 4 Monte Carlo Simulations 10 4.1 I - Incident and Prevalent Covariate Data . . . . . . . . . . . . . . . 11 4.2 Scenario II - Prevalent Cohort Data without Follow-Up . . . . . . . . 14 5 An Analysis of NCS-R Data 17 6 Concluding Remarks 18 7 Reference 20 A Appendix 22 | |
| dc.language.iso | en | |
| dc.subject | 盛行世代抽樣 | zh_TW |
| dc.subject | 發生世代抽樣 | zh_TW |
| dc.subject | 單指標存活模式 | zh_TW |
| dc.subject | 排序相關估計式 | zh_TW |
| dc.subject | 單指標存活模式 | zh_TW |
| dc.subject | 盛行世代抽樣 | zh_TW |
| dc.subject | 排序相關估計式 | zh_TW |
| dc.subject | 發生世代抽樣 | zh_TW |
| dc.subject | prevalent cohort sampling | en |
| dc.subject | single-index survival model | en |
| dc.subject | rank correlation estimation | en |
| dc.subject | prevalent cohort sampling | en |
| dc.subject | incident cohort sampling | en |
| dc.subject | single-index survival model | en |
| dc.subject | incident cohort sampling | en |
| dc.subject | rank correlation estimation | en |
| dc.title | 無存活時間之資料分析 | zh_TW |
| dc.title | Analyzing Survival Data Without Prospective Follow-Up | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃禮珊,鄭又仁 | |
| dc.subject.keyword | 發生世代抽樣,盛行世代抽樣,排序相關估計式,單指標存活模式, | zh_TW |
| dc.subject.keyword | incident cohort sampling,prevalent cohort sampling,rank correlation estimation,single-index survival model, | en |
| dc.relation.page | 24 | |
| dc.identifier.doi | 10.6342/NTU201600523 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-06-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用數學科學研究所 | zh_TW |
| 顯示於系所單位: | 應用數學科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 695.37 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
