Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50961
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorFu-Yu Shihen
dc.contributor.author施甫諭zh_TW
dc.date.accessioned2021-06-15T13:09:13Z-
dc.date.available2019-08-01
dc.date.copyright2016-07-05
dc.date.issued2016
dc.date.submitted2016-06-29
dc.identifier.citationReferences 127
1. Miró, P., M. Audiffred, and T. Heine, An atlas of two-dimensional materials. Chemical Society Reviews, 2014. 43(18): p. 6537-6554.
2. Wallace, P.R., The band theory of graphite. Physical Review, 1947. 71(9): p. 622.
3. Ruess, G. and F. Vogt, Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd. Monatshefte für Chemie/Chemical Monthly, 1948. 78(3): p. 222-242.
4. Boehm, H., et al. Surface properties of extremely thin graphite lamellae. in proceedings of the fifth conference on carbon. 1962. Pergamon Press New York.
5. Oshima, C. and A. Nagashima, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. Journal of Physics: Condensed Matter, 1997. 9(1): p. 1.
6. Lu, X., et al., Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Applied Physics Letters, 1999. 75(2): p. 193-195.
7. Lu, X., et al., Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 1999. 10(3): p. 269.
8. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
9. Zhang, Y., et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005. 438(7065): p. 201-204.
10. Novoselov, K., et al., Two-dimensional gas of massless Dirac fermions in graphene. nature, 2005. 438(7065): p. 197-200.
11. Kane, C.L. and E.J. Mele, Quantum spin Hall effect in graphene. Physical review letters, 2005. 95(22): p. 226801.
12. Min, H., et al., Intrinsic and Rashba spin-orbit interactions in graphene sheets. Physical Review B, 2006. 74(16): p. 165310.
13. Han, W., et al., Electron-hole asymmetry of spin injection and transport in single-layer graphene. Physical review letters, 2009. 102(13): p. 137205.
14. Nair, R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
15. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
16. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
17. Novoselov, K.S., et al., A roadmap for graphene. Nature, 2012. 490(7419): p. 192-200.
18. Bao, Q. and K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS nano, 2012. 6(5): p. 3677-3694.
19. Schwierz, F., Graphene transistors. Nature nanotechnology, 2010. 5(7): p. 487-496.
20. Avouris, P. and C. Dimitrakopoulos, Graphene: synthesis and applications. Materials today, 2012. 15(3): p. 86-97.
21. Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 2010. 22(35): p. 3906-3924.
22. Xia, F., et al., Two-dimensional material nanophotonics. Nature Photonics, 2014. 8(12): p. 899-907.
23. Butler, S.Z., et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano, 2013. 7(4): p. 2898-2926.
24. Xu, M., et al., Graphene-like two-dimensional materials. Chemical reviews, 2013. 113(5): p. 3766-3798.
25. Fiori, G., et al., Electronics based on two-dimensional materials. Nature nanotechnology, 2014. 9(10): p. 768-779.
26. Novoselov, K., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
27. Bhimanapati, G.R., et al., Recent Advances in Two-Dimensional Materials Beyond Graphene. ACS nano, 2015. 9(12): p. 11509-11539.
28. Mak, K.F., et al., Atomically thin MoS 2: a new direct-gap semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
29. Tongay, S., et al., Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano letters, 2012. 12(11): p. 5576-5580.
30. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature nanotechnology, 2011. 6(3): p. 147-150.
31. Cheng, R., et al., Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nature communications, 2014. 5.
32. Wang, H., et al., Black phosphorus radio-frequency transistors. Nano letters, 2014. 14(11): p. 6424-6429.
33. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.
34. Haigh, S., et al., Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nature materials, 2012. 11(9): p. 764-767.
35. Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
36. Novoselov, K., Nobel lecture: graphene: materials in the flatland. Reviews of Modern Physics, 2011. 83(3): p. 837.
37. Schultz, B.J., et al., An electronic structure perspective of graphene interfaces. Nanoscale, 2014. 6(7): p. 3444-3466.
38. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275.
39. Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275.
40. Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Materials Today, 2012. 15(12): p. 564-589.
41. Dhar, S., et al., A new route to graphene layers by selective laser ablation. Aip Advances, 2011. 1(2): p. 022109.
42. Liu, Y., et al., Layer-by-layer thinning of MoS2 by plasma. ACS nano, 2013. 7(5): p. 4202-4209.
43. Shih, C.-J., et al., Bi-and trilayer graphene solutions. Nature nanotechnology, 2011. 6(7): p. 439-445.
44. Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. Nano letters, 2011. 11(12): p. 5111-5116.
45. Nicolosi, V., et al., Liquid exfoliation of layered materials. Science, 2013. 340(6139): p. 1226419.
46. Ma, R. and T. Sasaki, Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge‐Bearing Functional Crystallites. Advanced materials, 2010. 22(45): p. 5082-5104.
47. Tanaka, T., et al., Oversized titania nanosheet crystallites derived from flux-grown layered titanate single crystals. Chemistry of materials, 2003. 15(18): p. 3564-3568.
48. Coleman, J.N., Liquid exfoliation of defect-free graphene. Accounts of chemical research, 2012. 46(1): p. 14-22.
49. Coleman, J.N., et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011. 331(6017): p. 568-571.
50. Reina, A., et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 2008. 9(1): p. 30-35.
51. Wei, D., et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters, 2009. 9(5): p. 1752-1758.
52. Shi, Y., H. Li, and L.-J. Li, Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chemical Society Reviews, 2015. 44(9): p. 2744-2756.
53. Zhang, Y., L. Zhang, and C. Zhou, Review of chemical vapor deposition of graphene and related applications. Accounts of chemical research, 2013. 46(10): p. 2329-2339.
54. Ling, X., et al., Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano letters, 2014. 14(2): p. 464-472.
55. Weiss, N.O., et al., Graphene: an emerging electronic material. Advanced Materials, 2012. 24(43): p. 5782-5825.
56. Sylvia, S.S., et al., Material selection for minimizing direct tunneling in nanowire transistors. Electron Devices, IEEE Transactions on, 2012. 59(8): p. 2064-2069.
57. Schwierz, F., J. Pezoldt, and R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015. 7(18): p. 8261-8283.
58. Jariwala, D., et al., Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano, 2014. 8(2): p. 1102-1120.
59. Pu, J., et al., Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano letters, 2012. 12(8): p. 4013-4017.
60. Lee, G.-H., et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS nano, 2013. 7(9): p. 7931-7936.
61. Chen, Z., et al., Fabrication of highly transparent and conductive indium–tin oxide thin films with a high figure of merit via solution processing. Langmuir, 2013. 29(45): p. 13836-13842.
62. Kuzmenko, A., et al., Universal optical conductance of graphite. Physical review letters, 2008. 100(11): p. 117401.
63. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 2010. 5(8): p. 574-578.
64. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9): p. 351-355.
65. Radisavljevic, B. and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nature materials, 2013. 12(9): p. 815-820.
66. The International Techmology Roadmap for Semiconductors, http://www.itrs.net/.
67. Simon, S.H., The Oxford solid state basics. 2013: Oxford University Press.
68. Schwabl, F., Advanced quantum mechanics. 2005: Springer Science & Business Media.
69. Hwang, E. and S.D. Sarma, Dielectric function, screening, and plasmons in two-dimensional graphene. Physical Review B, 2007. 75(20): p. 205418.
70. Hwang, E. and S.D. Sarma, Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B, 2008. 77(11): p. 115449.
71. Kaasbjerg, K., K.S. Thygesen, and K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS 2 from first principles. Physical Review B, 2012. 85(11): p. 115317.
72. Fratini, S. and F. Guinea, Substrate-limited electron dynamics in graphene. Physical Review B, 2008. 77(19): p. 195415.
73. Fischetti, M.V., D.A. Neumayer, and E.A. Cartier, Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-kappa insulator: The role of remote phonon scattering. Journal of Applied Physics, 2001. 90: p. 4587-4608.
74. Chen, J.-H., et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature nanotechnology, 2008. 3(4): p. 206-209.
75. Ong, Z.-Y. and M.V. Fischetti, Mobility enhancement and temperature dependence in top-gated single-layer MoS 2. Physical Review B, 2013. 88(16): p. 165316.
76. Jena, D. and A. Konar, Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Physical review letters, 2007. 98(13): p. 136805.
77. Ishigami, M., et al., Atomic structure of graphene on SiO2. Nano letters, 2007. 7(6): p. 1643-1648.
78. Lin, Y.-C., et al., Graphene annealing: how clean can it be? Nano letters, 2011. 12(1): p. 414-419.
79. Konstantatos, G. and E.H. Sargent, Nanostructured materials for photon detection. Nature nanotechnology, 2010. 5(6): p. 391-400.
80. Koppens, F., et al., Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature nanotechnology, 2014. 9(10): p. 780-793.
81. Buscema, M., et al., Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 2015. 44(11): p. 3691-3718.
82. Sun, Z. and H. Chang, Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. Acs Nano, 2014. 8(5): p. 4133-4156.
83. Freitag, M., et al., Photoconductivity of biased graphene. Nature Photonics, 2013. 7(1): p. 53-59.
84. Xia, F., et al., Ultrafast graphene photodetector. Nature nanotechnology, 2009. 4(12): p. 839-843.
85. Sun, D., et al., Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008. 101(15): p. 157402.
86. Lee, E.J., et al., Contact and edge effects in graphene devices. Nature nanotechnology, 2008. 3(8): p. 486-490.
87. Xia, F., et al., Photocurrent imaging and efficient photon detection in a graphene transistor. Nano letters, 2009. 9(3): p. 1039-1044.
88. Fontana, M., et al., Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep, 2013. 3: p. 1634.
89. Buscema, M., et al., Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature communications, 2014. 5.
90. Cowan, A.J. and J.R. Durrant, Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chemical Society Reviews, 2013. 42(6): p. 2281-2293.
91. Ashcroft, N.W. and N.D. Mermin, Solid state physics (saunders college, philadelphia, 1976). Appendix N, 2010.
92. Nolas, G.S., J. Sharp, and J. Goldsmid, Thermoelectrics: basic principles and new materials developments. Vol. 45. 2013: Springer Science & Business Media.
93. Heremans, J.P., et al., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008. 321(5888): p. 554-557.
94. Buscema, M., et al., Large and tunable photothermoelectric effect in single-layer MoS2. Nano letters, 2013. 13(2): p. 358-363.
95. Xu, X., et al., Photo-thermoelectric effect at a graphene interface junction. Nano letters, 2009. 10(2): p. 562-566.
96. Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91(6): p. 063124.
97. Chen, S.-Y., et al., Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates. Nano letters, 2012. 12(2): p. 964-969.
98. Binnig, G., C.F. Quate, and C. Gerber, Atomic force microscope. Physical review letters, 1986. 56(9): p. 930.
99. West, P.E.a.P., Atomic Force Microscopy. 2010, United Kingdom: Oxford University Press.
100. Zhang, Y.B., et al., Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters, 2005. 86(7).
101. Wang, X.R., et al., Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 2008. 100(20): p. 206803-1-206803-4.
102. Stander, N., B. Huard, and D. Goldhaber-Gordon, Evidence for Klein Tunneling in Graphene p-n Junctions. Physical Review Letters, 2009. 102(2): p. 026807-1-026807-4.
103. Lin, Y.C., et al., Clean Transfer of Graphene for Isolation and Suspension. Acs Nano, 2011. 5(3): p. 2362-2368.
104. Ishigami, M., et al., Atomic structure of graphene on SiO2. Nano Letters, 2007. 7(6): p. 1643-1648.
105. Goossens, A.M., et al., Mechanical cleaning of graphene. Applied Physics Letters, 2012. 100(7).
106. Her, M., R. Beams, and L. Novotny, Graphene transfer with reduced residue. Physics Letters A, 2013. 377(21-22): p. 1455-1458.
107. Staley, N., et al., Lithography-free fabrication of graphene devices. Applied Physics Letters, 2007. 90(14): p. 143518.
108. Bao, W.Z., et al., Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Research, 2010. 3(2): p. 98-102.
109. Ferrari, A., et al., Raman spectrum of graphene and graphene layers. Physical review letters, 2006. 97(18): p. 187401.
110. Bao, W., et al., Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Research, 2010. 3(2): p. 98-102.
111. Venugopal, A., L. Colombo, and E. Vogel, Contact resistance in few and multilayer graphene devices. Applied Physics Letters, 2010. 96(1): p. 013512.
112. Nagashio, K., et al., Contact resistivity and current flow path at metal/graphene contact. Applied Physics Letters, 2010. 97(14): p. 143514.
113. Cheng, H.-C., et al., High-quality graphene p− n junctions via resist-free fabrication and solution-based noncovalent functionalization. Acs Nano, 2011. 5(3): p. 2051-2059.
114. Xia, F., et al., The origins and limits of metal-graphene junction resistance. Nature nanotechnology, 2011. 6(3): p. 179-184.
115. Adam, S., et al., A self-consistent theory for graphene transport. Proceedings of the National Academy of Sciences, 2007. 104(47): p. 18392-18397.
116. Hwang, E., S. Adam, and S.D. Sarma, Carrier transport in two-dimensional graphene layers. Physical Review Letters, 2007. 98(18): p. 186806.
117. Chen, J.-H., et al., Charged-impurity scattering in graphene. Nature Physics, 2008. 4(5): p. 377-381.
118. Blake, P., et al., Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Communications, 2009. 149(27): p. 1068-1071.
119. Bonaccorso, F., et al., Graphene photonics and optoelectronics. Nature Photonics, 2010. 4(9): p. 611-622.
120. Bao, Q.L. and K.P. Loh, Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices. Acs Nano, 2012. 6(5): p. 3677-3694.
121. Miao, X.C., et al., High Efficiency Graphene Solar Cells by Chemical Doping. Nano Letters, 2012. 12(6): p. 2745-2750.
122. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-578.
123. Konstantatos, G., et al., Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nature Nanotechnology, 2012. 7(6): p. 363-368.
124. Nair, R.R., et al., Fine structure constant defines visual transparency of graphene. Science, 2008. 320(5881): p. 1308-1308.
125. Casiraghi, C., et al., Rayleigh imaging of graphene and graphene layers. Nano Letters, 2007. 7(9): p. 2711-2717.
126. Zhang, Y.B., et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009. 459(7248): p. 820-823.
127. Echtermeyer, T.J., et al., Strong plasmonic enhancement of photovoltage in graphene. Nature Communications, 2011. 2.
128. Koppens, F.H.L., D.E. Chang, and F.J.G. de Abajo, Graphene Plasmonics: A Platform for Strong Light-Matter Interactions. Nano Letters, 2011. 11(8): p. 3370-3377.
129. Gabor, N.M., et al., Hot Carrier-Assisted Intrinsic Photoresponse in Graphene. Science, 2011. 334(6056): p. 648-652.
130. Zhang, D.Y., et al., Understanding Charge Transfer at PbS-Decorated Graphene Surfaces toward a Tunable Photosensor. Advanced Materials, 2012. 24(20): p. 2715-2720.
131. Zhang, D., et al., Understanding Charge Transfer at PbS‐Decorated Graphene Surfaces toward a Tunable Photosensor. Advanced Materials, 2012. 24(20): p. 2715-2720.
132. Li, X.M., et al., Graphene-On-Silicon Schottky Junction Solar Cells. Advanced Materials, 2010. 22(25): p. 2743-+.
133. Chen, J.H., et al., Charged-impurity scattering in graphene. Nature Physics, 2008. 4(5): p. 377-381.
134. Pi, K., et al., Electronic doping and scattering by transition metals on graphene. Physical Review B, 2009. 80(7).
135. McCreary, K.M., K. Pi, and R.K. Kawakami, Metallic and insulating adsorbates on graphene. Applied Physics Letters, 2011. 98(19).
136. Liu, Z.M., et al., Molecular memories that survive silicon device processing and real-world operation. Science, 2003. 302(5650): p. 1543-1545.
137. Campbell, W.M., et al., Porphyrins as light harvesters in the dye-sensitised TiO2 solar cell. Coordination Chemistry Reviews, 2004. 248(13-14): p. 1363-1379.
138. Spanggaard, H. and F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells, 2004. 83(2-3): p. 125-146.
139. Hecht, D.S., et al., Bioinspired detection of light using a porphyrin-sensitized single-wall nanotube field effect transistor. Nano Letters, 2006. 6(9): p. 2031-2036.
140. Yamada, H., et al., Photovoltaic properties of self-assembled monolayers of porphyrins and porphyrin-fullerene dyads on ITO and gold surfaces. Journal of the American Chemical Society, 2003. 125(30): p. 9129-9139.
141. Zhou, C.L., J.R. Diers, and D.F. Bocian, Q(y)-excitation resonance Raman spectra of chlorophyll a and related complexes. Normal mode characteristics of the low-frequency vibrations. Journal of Physical Chemistry B, 1997. 101(46): p. 9635-9644.
142. Ishii, H., et al., Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces (vol 11, pg 605, 1999). Advanced Materials, 1999. 11(12): p. 972-972.
143. Yu, Y.J., et al., Tuning the Graphene Work Function by Electric Field Effect. Nano Letters, 2009. 9(10): p. 3430-3434.
144. Oshima, C. and A. Nagashima, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. Journal of Physics-Condensed Matter, 1997. 9(1): p. 1-20.
145. Ishii, H. and K. Seki, Energy level alignment at organic/metal interfaces studied by UV photoemission: Breakdown of traditional assumption of a common vacuum level at the interface. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1295-1301.
146. Hill, I.G., et al., Molecular level alignment at organic semiconductor-metal interfaces. Applied Physics Letters, 1998. 73(5): p. 662-664.
147. Choi, H.G.; Oh, B. K.; Lee, W. H.; Choi, J. W. Biotechnol. Bioprocess Eng. 2001, 6, 183-188
148. Jeon, E.K., et al., Photoconductivity and enhanced memory effects in hybrid C-60-graphene transistors. Nanotechnology, 2012. 23(45).
149. Nelson, R.C., Energy Levels in Chlorophyll and Electron Transfer Processes. Photochemistry and Photobiology, 1968. 8(5): p. 441-&.
150. Wu, H.C., et al., Photoinduced Electron Transfer in Dye-Sensitized SnO2 Nanowire Field-Effect Transistors. Advanced Functional Materials, 2011. 21(3): p. 474-479.
151. Jeon, E.-K., et al., Photoconductivity and enhanced memory effects in hybrid C60–graphene transistors. Nanotechnology, 2012. 23(45): p. 455202.
152. Tan, Y.W., et al., Measurement of scattering rate and minimum conductivity in graphene. Physical Review Letters, 2007. 99(24).
153. Zhang, Y.B., et al., Origin of spatial charge inhomogeneity in graphene. Nature Physics, 2009. 5(10): p. 722-726.
154. Konstantatos, G. and E.H. Sargent, Nanostructured materials for photon detection (vol 5, pg 391, 2010). Nature Nanotechnology, 2010. 5(12).
155. Nasr, C., et al., Exciton diffusion length in microcrystalline chlorophyll a. Applied Physics Letters, 1996. 69(13): p. 1823-1825.
156. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nature materials, 2007. 6(9): p. 652-655.
157. Varghese, S.S., et al., Two-Dimensional Materials for Sensing: Graphene and Beyond. Electronics, 2015. 4(3): p. 651-687.
158. Tongay, S., et al., Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano letters, 2013. 13(6): p. 2831-2836.
159. He, R., et al., Large physisorption strain in chemical vapor deposition of graphene on copper substrates. Nano letters, 2012. 12(5): p. 2408-2413.
160. Perkins, F.K., et al., Chemical vapor sensing with monolayer MoS2. Nano letters, 2013. 13(2): p. 668-673.
161. Ando, T., Screening effect and impurity scattering in monolayer graphene. Journal of the Physical Society of Japan, 2006. 75(7): p. 074716.
162. Ma, N. and D. Jena, Charge scattering and mobility in atomically thin semiconductors. Physical Review X, 2014. 4(1): p. 011043.
163. Tan, Y.-W., et al., Measurement of scattering rate and minimum conductivity in graphene. Physical review letters, 2007. 99(24): p. 246803.
164. Kretinin, A., et al., Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano letters, 2014. 14(6): p. 3270-3276.
165. Ho, P.-H., et al., Self-encapsulated doping of n-type graphene transistors with extended air stability. ACS nano, 2012. 6(7): p. 6215-6221.
166. Lee, G.-H., et al., Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. ACS nano, 2015. 9(7): p. 7019-7026.
167. Li, L., et al., Quantum Hall effect in black phosphorus two-dimensional electron system. Nature Nanotechnology, 2016.
168. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2. Physical Review B, 2011. 83(24): p. 245213.
169. Yun, W.S., et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X 2 semiconductors (M= Mo, W; X= S, Se, Te). Physical Review B, 2012. 85(3): p. 033305.
170. Cheiwchanchamnangij, T. and W.R. Lambrecht, Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2. Physical Review B, 2012. 85(20): p. 205302.
171. Howell, S.L., et al., Investigation of Band-Offsets at Monolayer–Multilayer MoS2 Junctions by Scanning Photocurrent Microscopy. Nano letters, 2015. 15(4): p. 2278-2284.
172. Tosun, M., et al., MoS2 Heterojunctions by Thickness Modulation. Scientific reports, 2015. 5.
173. Qiu, H., et al., Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Applied Physics Letters, 2012. 100(12): p. 123104.
174. Yue, Q., et al., Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale research letters, 2013. 8(1): p. 1-7.
175. Li, H., et al., From bulk to monolayer MoS2: evolution of Raman scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
176. Wu, Y.C., et al., Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect Transistors. Sci Rep, 2015. 5: p. 11472.
177. Jiang, H.X. and J.Y. Lin, Percolation transition of persistent photoconductivity in II-VI mixed crystals. Phys Rev Lett, 1990. 64(21): p. 2547-2550.
178. Dissanayake, A.S., et al., Charge Storage and Persistent Photoconductivity in a Cds0.5se0.5 Semiconductor Alloy. Physical Review B, 1991. 44(24): p. 13343-13348.
179. Palmer, R.G., et al., Models of Hierarchically Constrained Dynamics for Glassy Relaxation. Physical Review Letters, 1984. 53(10): p. 958-961.
180. Yin, Z.Y., et al., Single-Layer MoS2 Phototransistors. ACS Nano, 2012. 6(1): p. 74-80.
181. Lee, H.S., et al., MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Letters, 2012. 12(7): p. 3695-3700.
182. Chen, S.Y., et al., Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon, 2013. 63: p. 23-29.
183. Sze, S.M. and K.K. Ng, Physics of semiconductor devices. 2006: John wiley & sons.
184. Ho, P.H., et al., Precisely Controlled Ultrastrong Photoinduced Doping at Graphene–Heterostructures Assisted by Trap‐State‐Mediated Charge Transfer. Advanced Materials, 2015. 27(47): p. 7809-7815.
185. Rai, A., et al., Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation. Nano letters, 2015. 15(7): p. 4329-4336.
186. Li, S.-L., et al., Thickness Scaling Effect on Interfacial Barrier and Electrical Contact to Two-Dimensional MoS2 Layers. ACS Nano, 2014.
187. Zhang, Y., et al., Photothermoelectric and photovoltaic effects both present in MoS2. Sci Rep, 2015. 5: p. 7938.
188. Patil, V., et al., Improved photoresponse with enhanced photoelectric contribution in fully suspended graphene photodetectors. Scientific reports, 2013. 3.
189. Zhang, W., et al., High-gain phototransistors based on a CVD MoS(2) monolayer. Adv Mater, 2013. 25(25): p. 3456-61.
190. Cho, K., et al., Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS2 field-effect transistors. Nanotechnology, 2014. 25(15): p. 155201.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50961-
dc.description.abstract本篇論文的研究主軸是提供二維材料電晶體的特殊製程以及探討二維材料光電傳輸特性。近十年以來,二維材料是發展相當迅速的新穎奈米材料,它擁有許多獨特的性質,比如說:半金屬二維材料-石墨烯(graphene)擁有極高的載子遷移率、半導體二維材料-二硫化鉬(MoS2)的能隙會隨著層數的不同而改變,這些材料特性有助於科學家去研發設計新型態電晶體或光電元件的應用。在文章中,我們將研究分成三個區塊
首先.我們研發一套新穎、無光阻殘留技術的特殊元件製程來製作多點電極二維材料電晶體,利用聚酸甲酯(PMMA)當作薄膜蒸鍍罩,並結合電子束微影技術設計客製化薄膜蒸鍍罩的樣式。在此製程下所製作的高品質石墨烯電晶體展現許多石墨烯的電子傳輸本質特性,像是量子霍爾效應。那些無法使用顯影製程的材料,將可透過此技術來製作元件。
第二,石墨烯的高載子遷移率特性適合用在光偵測器,但石墨烯的低吸收效率卻限制其光電元件的表現行為。為此,我們專注於改善石墨烯光偵測器的低響應限制。藉由感光生物材料-葉綠素的修飾,將石墨烯光偵測器的光感應效率提升109倍。此研究為未來的綠能源研究提出一個可評估的方向。
最後,我們系統性地探討二硫化鉬橫向接面電晶體的光電流傳輸特性。在不同層數的二硫化鉬接面中,存在一個由不同二硫化鉬能隙而產生的內建電場。有趣的事情是,由內建電場產生的自供電光電流有著與環境無關的特性,本文會進一步討論其機制。此研究對於半導體二維材料橫向接面提供進一步的了解,並其光電元件的應用。
zh_TW
dc.description.abstractTwo-dimensional (2D) materials such as graphene and MoS2 have attracted intense attention due to their remarkable properties. High carrier mobility of graphene and tunable bandgap of 2D semiconductor are kinds of significant and interesting properties for researcher to design potential electronic or optoelectronic application. In this thesis, we have devoted to study in the following three goals.
Firstly, we aim to develop a simple, novel and residue-free technique that allows for the fabrication of multi-probe metal contacts on 2D materials. We fabricate a stencil mask consisted of thin film of poly (methyl methacrylate) (PMMA), which is patterned by e-beam lithography. When we use this technique to fabricate graphene device and demonstrate high quality of graphene field-effect transistors by observation of smooth graphene surfaces and distinct transport/magnetotransport behavior. The feasibility of this stencil-mask technique offer the versatile fabrication of 2D material devices.
Then, we focus on identifying the issue of low absorption rate in graphene, which limit the performance of graphene transistors in photodetector application. Here, we demonstrate novel solutions to overcome ultralow response of graphene-based photodetector, by the integration of light-absorbing materials in graphene transistors. The result shows that the hybrid graphene-organic molecule transistors with high photosensitivity is promising insight for the development of graphene-based optoelectronics.
Finally, we demonstrate a systematic photoresponse study in novel structure of 2D semiconducting material. Based on the existence of discontinuities in energy bands from different layers of TMDCs materials, we observed built-in electric field induced photovoltaic current in layer-modified MoS2 junction. Interestingly, photovoltaic current exhibits environment-insensitive and field-effect controllable and the mechanisms are discussed in the thesis. This study extends the understanding of optoelectronic properties in layer-modified 2D semiconducting material junction.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:09:13Z (GMT). No. of bitstreams: 1
ntu-105-D00222022-1.pdf: 4490879 bytes, checksum: cbddec5fa7c26dd55dfdefb485d83c42 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 History of 2D material research 1
1.2 Basic properties of 2D materials 9
1.2.1 Graphene 9
1.2.2 Molybdenum disulfide(MoS2) 13
1.3 synthesis of 2D material 17
1.3.1 Dry exfoliation 17
1.3.2 Liquid exfoliation 20
1.3.3 Chemical vapor deposition (CVD) 22
1.4 Overview of 2D material applications 26
1.4.1 Electronic applications 26
1.4.2 Optoelectronic application 31
1.5 Thesis organization 34
Chapter 2 Theoretical background of 2D material system 36
2.1 Characters of 2D material electronics 36
2.1.1 Figures of merit in 2D-material field effect transistors 36
2.1.2 Scattering mechanisms in 2D materials 40
2.2 Characters of 2D material optoelectronics 50
2.2.1 Figures of merit in 2D-material photodetectors 50
2.2.2 Photodetection mechanisms in 2D materials 53
Chapter 3 Experimental method 59
3.1 2D-material field effect transistor fabrication 59
3.1.1 Substrate preparation 59
3.1.2 2D materials Synthesis 61
3.1.3 Definition of electrodes pattern 62
3.2 Measurement setup 62
3.2.1 Physical properties measurement system 62
3.2.2 photonic properties measurement system 63
3.2.3 Atomic force microscopy 63
3.3 Electrical impedance measurement approach 66
3.3.1 DC electrical measurement 67
3.3.2 AC electrical measurement 68
Chapter 4 Residue-Free Fabrication of High-performance Graphene Devices by Patterned PMMA-film Stencil Mask 71
4.1 Introduction 71
4.2 Devices fabrication 72
4.3 Results and discussion 76
4.4 Results of magnetotransport 79
4.5 Conclusions 82
Chapter 5 Biologically inspired graphene-chlorophyll phototransistors with high gain 83
5.1 Introduction 83
5.2 Device fabrication 85
5.3 Result and Discussion 88
5.4 Conclusions 104
Chapter 6 Environment-insensitive self-powered photocurrent enabled by bandgap engineering of MoS2 junctions 105
6.1 Introduction 105
6.2 Device fabrication 107
6.3 Results and discussion 110
6.4 Conclusions 123
Chapter 7 Conclusion 124
References 127
dc.language.isoen
dc.subject場效電晶體zh_TW
dc.subject二維材料zh_TW
dc.subject石墨烯zh_TW
dc.subject二硫化鉬zh_TW
dc.subject無光阻技術製程zh_TW
dc.subject光偵測器zh_TW
dc.subject光電傳輸特性zh_TW
dc.subject二維材料zh_TW
dc.subject石墨烯zh_TW
dc.subject二硫化鉬zh_TW
dc.subject無光阻技術製程zh_TW
dc.subject場效電晶體zh_TW
dc.subject光偵測器zh_TW
dc.subject光電傳輸特性zh_TW
dc.subjectgrapheneen
dc.subjectoptoelectronic propertiesen
dc.subjectmolybdenum disulphideen
dc.subjecttwo-dimensional materialsen
dc.subjectoptoelectronic propertiesen
dc.subjectphotodetectoren
dc.subjectfield effect transistoren
dc.subjectresist-free fabricationen
dc.subjecttwo-dimensional materialsen
dc.subjectgrapheneen
dc.subjectmolybdenum disulphideen
dc.subjectresist-free fabricationen
dc.subjectfield effect transistoren
dc.subjectphotodetectoren
dc.title二維材料場效電晶體之製作及其光電/傳輸特性zh_TW
dc.titleFabrication and optoelectronic/transport properties of two-dimensional-material field-effect transistorsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.coadvisor王偉華(Wei-Hua Wang)
dc.contributor.oralexamcommittee陳俊維(Chun-Wei Chen),林時彥(Shih-Yen Lin),蘇清源(Ching-Yuan Su)
dc.subject.keyword二維材料,石墨烯,二硫化鉬,無光阻技術製程,場效電晶體,光偵測器,光電傳輸特性,zh_TW
dc.subject.keywordtwo-dimensional materials,graphene,molybdenum disulphide,resist-free fabrication,field effect transistor,photodetector,optoelectronic properties,en
dc.relation.page139
dc.identifier.doi10.6342/NTU201600247
dc.rights.note有償授權
dc.date.accepted2016-06-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
4.39 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved