Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50953
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳洵毅(Hsun-Yi Chen)
dc.contributor.authorMan-Chen Huangen
dc.contributor.author黃漫真zh_TW
dc.date.accessioned2021-06-15T13:08:42Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-14
dc.identifier.citation賴柏宇. (2015). 鋰硫電池材料開發與電化學分析-PVDF 膠體電解質對枝晶生成及碳保護層對硫電極之影響. 臺灣大學生物產業機電工程學研究所學位論文, 1-105.
陳奕惟. (2017). 含PVdF膠體電解質之結構超級電容複合材料研究-電化學性質與封裝製程探討. 臺灣大學工程科學及海洋工程學研究所學位論文, 1-106.
Bard, A. J., Faulkner, L. R., Leddy, J., Zoski, C. G. (1980). Electrochemical methods: fundamentals and applications (Vol. 2). New York: Wiley.
Abbas, Q., H. Fitzek, V. Pavlenko, and B. Gollas, 2020: Towards an optimized hybrid electrochemical capacitor in iodide based aqueous redox-electrolyte: Shift of equilibrium potential by electrodes mass-balancing. Electrochimica acta, 337, 135785.
Agubra, V. A., and J. W. Fergus, 2014: The formation and stability of the solid electrolyte interface on the graphite anode. Journal of Power Sources, 268, 153-162.
Aoki, D., and Coauthors: PhD Thesis in Grenoble PhD Thesis in Grenoble.
Aurbach, D., and M. Moshkovich, 1998: A Study of Lithium Deposition‐Dissolution Processes in a Few Selected Electrolyte Solutions by Electrochemical Quartz Crystal Microbalance. Journal of The Electrochemical Society, 145, 2629.
Brousse, T., D. Bélanger, and J. W. Long, 2015: To be or not to be pseudocapacitive? Journal of The Electrochemical Society, 162, A5185-A5189.
Casas, J., F. Alvarez, and L. Cifuentes, 2000: Aqueous speciation of sulfuric acid–cupric sulfate solutions. Chemical engineering science, 55, 6223-6234.
Cetinkaya, T., M. Tokur, S. Ozcan, M. Uysal, and H. Akbulut, 2016: Graphene supported α-MnO2 nanocomposite cathodes for lithium ion batteries. International Journal of Hydrogen Energy, 41, 6945-6953.
Chapman, D. L., 1913: LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 25, 475-481.
Chin, S. F., S. C. Pang, and M. A. Anderson, 2010: Self-assembled manganese dioxide nanowires as electrode materials for electrochemical capacitors. Materials Letters, 64, 2670-2672.
Chou, S.-L., J.-Z. Wang, S.-Y. Chew, H.-K. Liu, and S.-X. Dou, 2008: Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochemistry Communications, 10, 1724-1727.
Chu, J., D. Lu, J. Ma, M. Wang, X. Wang, and S. Xiong, 2017: Controlled growth of MnO2 via a facile one-step hydrothermal method and their application in supercapacitors. Materials Letters, 193, 263-265.
Conway, B. E., 2013: Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science Business Media.
Cowlard, F., and J. Lewis, 1967: Vitreous carbon—A new form of carbon. Journal of Materials Science, 2, 507-512.
Demarconnay, L., E. Raymundo-Piñero, and F. Béguin, 2011: Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor. Journal of Power Sources, 196, 580-586.
Dubal, D. P., D. S. Dhawale, R. R. Salunkhe, and C. D. Lokhande, 2010: Conversion of chemically prepared interlocked cubelike Mn3O4 to birnessite MnO2 using electrochemical cycling. Journal of the Electrochemical Society, 157, A812-A817.
Dubey, R., and V. Guruviah, 2019: Review of carbon-based electrode materials for supercapacitor energy storage. Ionics, 25, 1419-1445.
Dullien, F. A., 2012: Porous media: fluid transport and pore structure. Academic press.
Endo, M., T. Takeda, Y. Kim, K. Koshiba, and K. Ishii, 2001: High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons. Carbon letters, 1, 117-128.
Fang, L., and Coauthors, 2019: Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Materials, 18, 107-113.
Friedrich, J., C. Ponce-de-León, G. Reade, and F. Walsh, 2004: Reticulated vitreous carbon as an electrode material. Journal of Electroanalytical Chemistry, 561, 203-217.
Gao, Q., L. Demarconnay, E. Raymundo-Piñero, and F. Béguin, 2012: Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environmental Science, 5, 9611-9617.
Gentili, V., S. Panero, P. Reale, and B. Scrosati, 2007: Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. Journal of power sources, 170, 185-190.
Ghosh, D., S. Bhandari, and D. Khastgir, 2016: Synthesis of MnO 2 nanoparticles and their effective utilization as UV protectors for outdoor high voltage polymeric insulators used in power transmission lines. Physical Chemistry Chemical Physics, 18, 32876-32890.
González, A., E. Goikolea, J. A. Barrena, and R. Mysyk, 2016: Review on supercapacitors: technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206.
Gouy, M., 1910: Sur la constitution de la charge électrique à la surface d'un électrolyte.
Guo, X., R. Gong, N. Qin, L. Jin, J. Zheng, Q. Wu, and J. P. Zheng, 2019: The influence of electrode matching on capacity decaying of hybrid lithium ion capacitor. Journal of Electroanalytical Chemistry, 845, 84-91.
Hao, C., X. Wang, Y. Yin, and Z. You, 2016: Modeling and simulation of a lithium manganese oxide/activated carbon asymmetric supercapacitor. Journal of Electronic Materials, 45, 515-526.
Harikrishnan, G., T. Umasankar Patro, and D. V. Khakhar, 2007: Reticulated vitreous carbon from polyurethane foam–clay composites. Carbon, 45, 531-535.
Huang, C. W., C. A. Wu, S. S. Hou, P. L. Kuo, C. T. Hsieh, and H. Teng, 2012: Gel Electrolyte Derived from Poly (ethylene glycol) Blending Poly (acrylonitrile) Applicable to Roll‐to‐Roll Assembly of Electric Double Layer Capacitors. Advanced Functional Materials, 22, 4677-4685.
Johnson, C. S., 2007: Development and utility of manganese oxides as cathodes in lithium batteries. Journal of Power Sources, 165, 559-565.
Julien, C. M., and A. Mauger, 2017: Nanostructured MnO2 as electrode materials for energy storage. Nanomaterials, 7, 396.
Kim, B. K., S. Sy, A. Yu, and J. Zhang, 2015: Electrochemical supercapacitors for energy storage and conversion. Handbook of Clean Energy Systems, 1-25.
Kozen, A. C., A. J. Pearse, C.-F. Lin, M. A. Schroeder, M. Noked, S. B. Lee, and G. W. Rubloff, 2014: Atomic layer deposition and in situ characterization of ultraclean lithium oxide and lithium hydroxide. The Journal of Physical Chemistry C, 118, 27749-27753.
Lasia, A., 2002: Electrochemical impedance spectroscopy and its applications. Modern aspects of electrochemistry, Springer, 143-248.
Lee, H. Y., and J. B. Goodenough, 1999: Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry, 144, 220-223.
Lee, K.-T., and N.-L. Wu, 2008: Manganese oxide electrochemical capacitor with potassium poly (acrylate) hydrogel electrolyte. Journal of Power Sources, 179, 430-434.
Lei, C., N. Amini, F. Markoulidis, P. Wilson, S. Tennison, and C. Lekakou, 2013: Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). Journal of Materials Chemistry A, 1, 6037-6042.
Lei, K., X. Han, Y. Hu, X. Liu, L. Cong, F. Cheng, and J. Chen, 2015: Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chemical Communications, 51, 11599-11602.
Lewandowski, A., M. Zajder, E. Frąckowiak, and F. Beguin, 2001: Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochimica Acta, 46, 2777-2780.
Li, J., Y. Zhao, N. Wang, Y. Ding, and L. Guan, 2012: Enhanced performance of a MnO 2–graphene sheet cathode for lithium ion batteries using sodium alginate as a binder. Journal of Materials Chemistry, 22, 13002-13004.
Lin, C., J. A. Ritter, B. N. Popov, and R. E. White, 1999: A Mathematical Model of an Electrochemical Capacitor with Double‐Layer and Faradaic Processes. Journal of the Electrochemical Society, 146, 3168-3175.
Liu, W., and Coauthors, 2016: based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. Journal of Materials Chemistry A, 4, 3754-3764.
Liu, Y., P. Hu, H. Liu, J. Song, A. Umar, and X. Wu, 2019: Toward a high performance asymmetric hybrid capacitor by electrode optimization. Inorganic Chemistry Frontiers, 6, 2824-2831.
Lo, H.-J., and H.-Y. Chen, 2017: All-Solid-State Supercapacitor Based on Graphene Oxide Composite Electrodes. ECS Transactions, 80, 453.
Lu, X., M. Yu, G. Wang, Y. Tong, and Y. Li, 2014: Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environmental Science, 7, 2160-2181.
Ma, Y., M. Doyle, T. F. Fuller, M. M. Doeff, L. C. De Jonghe, and J. Newman, 1995: The measurement of a complete set of transport properties for a concentrated solid polymer electrolyte solution. Journal of The Electrochemical Society, 142, 1859-1868.
Masouras, A., D. Giannopoulos, B. Hasa, A. Katsaounis, and V. Kostopoulos, 2019: Hybrid graphene nanoplatelet/manganese oxide electrodes for solid-state supercapacitors and application to carbon fiber composite multifunctional materials. Journal of Energy Storage, 23, 515-525.
Ohno, H., 2009: Electrochemical Aspects of Ionic Liquids, 2nd edn, 2011 Search PubMed;(b) M. Armand, F. Endres, DR MacFarlane, H. Ohno and B. Scrosati. Nat. Mater, 8, 621.
Pal, B., S. Yang, S. Ramesh, V. Thangadurai, and R. Jose, 2019: Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 1, 3807-3835.
Pandolfo, A., and A. Hollenkamp, 2006: Carbon properties and their role in supercapacitors. Journal of power sources, 157, 11-27.
Pang, S. C., M. A. Anderson, and T. W. Chapman, 2000: Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society, 147, 444-450.
Pendashteh, A., E. Senokos, J. Palma, M. Anderson, J. J. Vilatela, and R. Marcilla, 2017: Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors. Journal of Power Sources, 372, 64-73.
Pillay, B., and J. Newman, 1996: The influence of side reactions on the performance of electrochemical double‐layer capacitors. Journal of the Electrochemical Society, 143, 1806-1814.
Posey, F., and T. Morozumi, 1966: Theory of potentiostatic and galvanostatic charging of the double layer in porous electrodes. Journal of the Electrochemical Society, 113, 176-184.
Purkait, T., G. Singh, D. Kumar, M. Singh, and R. S. Dey, 2018: High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Scientific reports, 8, 1-13.
Radich, J. G., Y.-S. Chen, and P. V. Kamat, 2013: Nickel-doped MnO2 nanowires anchored onto reduced graphene oxide for rapid cycling cathode in lithium ion batteries. ECS Journal of Solid State Science and Technology, 2, M3178-M3181.
Reddy, R. N., and R. G. Reddy, 2003: Sol–gel MnO2 as an electrode material for electrochemical capacitors. Journal of Power Sources, 124, 330-337.
Rudge, A., J. Davey, I. Raistrick, S. Gottesfeld, and J. P. Ferraris, 1994: Conducting polymers as active materials in electrochemical capacitors. Journal of power sources, 47, 89-107.
Saha, P., and M. Khanra, 2016: Equivalent circuit model of supercapacitor for self-discharge analysis—A comparative study. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), IEEE, 1381-1386.
Sedlakova, V., J. Sikula, J. Majzner, P. Sedlak, T. Kuparowitz, B. Buergler, and P. Vasina, 2015: Supercapacitor equivalent electrical circuit model based on charges redistribution by diffusion. Journal of Power Sources, 286, 58-65.
Sheng Chen, J. Z., Xiaodong Wu, Qiaofeng Han, and Xin Wang, 2010: <Electrochemical Performance of Electrodes in MnO2 Supercapacitor.pdf>. American Chemical Society NANO, 4.
Song, K., X. Chen, R. Yang, B. Zhang, X. Wang, P. Liu, and J. Wang, 2020: Novel hierarchical CoFe2Se4@ CoFe2O4 and CoFe2S4@ CoFe2O4 core-shell nanoboxes electrode for high-performance electrochemical energy storage. Chemical Engineering Journal, 390, 124175.
Song, Z., and Coauthors, 2019: Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. Journal of Materials Chemistry A, 7, 1177-1186.
Stern, O., 1924: The stern theory of electrochemical double layer. Elektrochemistry, 30, 508.
Su, H., and Coauthors, 2017: Waste to wealth: A sustainable and flexible supercapacitor based on office waste paper electrodes. Journal of Electroanalytical Chemistry, 786, 28-34.
Toupin, M., T. Brousse, and D. Bélanger, 2004: Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chemistry of Materials, 16, 3184-3190.
Vu, D.-L., J.-S. Seo, H.-Y. Lee, and J.-W. Lee, 2017: Activated carbon with hierarchical micro–mesoporous structure obtained from rice husk and its application for lithium–sulfur batteries. RSC advances, 7, 4144-4151.
Walsh, F. C., L. F. Arenas, C. Ponce de León, G. W. Reade, I. Whyte, and B. G. Mellor, 2016: The continued development of reticulated vitreous carbon as a versatile electrode material: Structure, properties and applications. Electrochimica Acta, 215, 566-591.
Wang, J., 1981: Reticulated vitreous carbon—a new versatile electrode material. Electrochimica Acta, 26, 1721-1726.
Wang, N., P. Zhao, K. Liang, M. Yao, Y. Yang, and W. Hu, 2017: CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chemical Engineering Journal, 307, 105-112.
Wei, L., and G. Yushin, 2012: Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 1, 552-565.
Wei, L., M. Sevilla, A. B. Fuertes, R. Mokaya, and G. Yushin, 2012: Polypyrrole‐derived activated carbons for high‐performance electrical double‐layer capacitors with ionic liquid electrolyte. Advanced Functional Materials, 22, 827-834.
Xu, B., and Coauthors, 2010: Activated carbon prepared from PVDC by NaOH activation as electrode materials for high performance EDLCs with non-aqueous electrolyte. International journal of hydrogen energy, 35, 632-637.
Xu, H., H. Zhang, S. Zhao, W. Huang, Z. Qu, and N. Yan, 2016: Elemental mercury (Hg0) removal over spinel LiMn2O4 from coal-fired flue gas. Chemical Engineering Journal, 299, 142-149.
Xu, K., 2004: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 104, 4303-4418.
Yang, W., J. Zhang, Q. Ma, Y. Zhao, Y. Liu, and H. He, 2017: Heterogeneous Reaction of SO 2 on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity. Scientific reports, 7, 4550.
Zane, D., A. Antonini, and M. Pasquali, 2001: A morphological study of SEI film on graphite electrodes. Journal of power sources, 97, 146-150.
Zhou, P., B. Li, F. Kang, and Y. Zeng, 2006: The development of supercapacitors from coconut-shell activated carbon. New Carbon Materials, 21, 125-131.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50953-
dc.description.abstract超級電容器是一種電化學儲能裝置,目前已經被應用在許多攜帶式電子產品和電動車的煞車回充系統,然而現今面臨的挑戰為相對低的能量密度,雖然目前有許多材料已被開發並做為超級電容器的電極,實驗方面仍需要進行多次重覆測試才能找出最佳化的超級電容器,此過程耗時費力。因此若能夠運用模擬軟體先進行超級電容器性能的預測,將能有效引導實驗的進行,並節省實驗上的時間及成本。本研究使用COMSOL模擬軟體預測不同參數對於超級電容器性能的影響,藉由模擬預測的結果引導實驗進行電極改質,改變的參數包含正極孔洞大小、厚度,以及負極活性物質的含量,以利得到最佳化的超級電容器。為了能得到較精準的預測結果,參數皆以實驗量測而非文獻的估計值。
電極材料方面選用水熱法合成的二氧化錳@網狀玻璃碳複合電極。二氧化錳為具有高比電容值和高電化學可逆性的擬電容材料;而網狀玻璃碳是一種具有高導電性、低銹蝕性、低密度和低熱膨脹率的孔洞材料;負極採用具有高比表面積和高操作區間的活性碳;搭配膠體聚合電解質形成全固態混合型超級電容器。過往水溶液電解質在1.6 V附近開始水解,會限制了超級電容器的能量密度,且流體易溢漏的問題也會造成安全上的疑慮。而膠體聚合物電解質擁有較高的操作電位,其固態的特性也可以防止電解質溢漏。
藉由模擬引導的最佳化超級電容器,以正極厚度2 mm、孔徑200 μm,負極活性碳含量0.8 g有最好的性能,實驗以電化學阻抗分析和充放電實驗檢測性能,充放電實驗的最高操作電位為3 V,也對系統的電化學可逆性做長時間10000圈充放電實驗,庫倫效率高達98%且比電容值仍維持第一圈的70%,最大能量密度和功率密度分別為21 Wh kg-1和4200 W kg-1。比較模擬和實驗的充放電圖可以得到相同的趨勢,證明可以利用模型來引導實驗最佳化的過程。
zh_TW
dc.description.abstractSupercapacitors have found increasing applications in portable electronics and the regenerative braking system of electric vehicles. The major challenge facing the state-of-the-art supercapacitors is their relatively low energy density. Though many materials have been developed and used as the electrodes of supercapacitors, repetitive experiments are needed to optimize the performance of supercapacitors. This process is not only time-consuming but it also wastes significant experimental resources. If simulation prediction can be used to guide experimental trials in advance, a lot of time and cost can be saved for device development and optimization. In this study, COMSOL software is employed to conduct simulations to guide the experiment for optimization of hybrid capacitors. Parameters including pore sizes, thicknesses of positive electrode and active material ratios of negative electrode are considered. Furthermore, all of the relevant parameters are measured through experiments so that the simulation prediction is more accurate.
MnO2/RVC composite electrode synthesized via hydrothermal technique is used as the positive electrode. MnO2 is shown to be a pseudocapacitive material in the aqueous system, which has high capacitance and high electrochemical reversibility. Reticulated vitreous carbon (RVC), meanwhile, is a porous, glassy carbon material advantageous in its high electrical conductivity, low density, high corrosion resistance, and low thermal expansion. And the capacitive negative electrode is comprised of activated carbon (AC) because of its high specific surface area and wide operable potentials. As for electrolyte, a PVDF based gel polymer electrolyte (GPE) is selected. The conventional aqueous electrolyte has its limit because of the decomposition of water. Moreover, the electrolyte leakage leads to safety concerns. On the other hand, GPE has wider operable voltage window and the solid-state characteristics preventing the electrolyte from leakage.
The electrochemical performance of the simulation guided all-solid-state supercapacitor with MnO2@RVC//AC electrodes and LiClO4 GPE is investigated by impedance spectroscopy (EIS), cyclic voltammetry (CV) and galvanostatic charge/discharge experiments (GCD), where GCD is conducted with an upper voltage limit of 3 V. MnO2@RVC//AC has Coulombic efficiency 98% and capacitance retention 70% over 10000 cycles, and energy density and power density are 21 Wh kg-1 and 4200 W kg-1, respectively. The GCD curves of simulation and experiment show the same trend, proving that the model can be used to guide the optimization of hybrid capacitor.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:08:42Z (GMT). No. of bitstreams: 1
U0001-1008202017250600.pdf: 6333211 bytes, checksum: ae9a739a2eca8483d90db2827e815096 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
ABSTRACT ii
總目錄 iv
圖目錄 viii
表目錄 xii
第一章 前言 1
1.1研究動機 1
1.2研究目的 2
第二章 文獻探討 4
2.1 超級電容器簡介 4
2.2超級電容器的種類與電化學機制 5
2.2.1電雙層電容器 6
2.2.2擬電容器 6
2.2.3混合型電容器 8
2.3混合型電容器的最佳化 9
2.4電化學分析與超級電容器的電化學特徵 11
2.4.1交流阻抗頻譜分析 11
2.4.2循環伏安法 13
2.5電解質 15
2.5.1液態電解質 15
2.5.2固態電解質 16
2.6固體電解質介面 18
2.7混合型電容器電極材料 20
2.7.1正極 20
2.7.2負極 23
2.8超級電容器的模型 24
第三章 材料與方法 27
3.1實驗藥品 27
3.2實驗流程 28
3.3電極製作 29
3.3.1活性碳電極 29
3.3.2二氧化錳@網狀玻璃碳複合電極 29
3.4電解質配製 31
3.5材料檢測 32
3.5.1數位顯微鏡 32
3.5.2X光繞射分析儀(XRD) 33
3.5.3傅立葉轉換紅外光譜(FTIR) 34
3.5.4X射線光電子能譜(XPS) 35
3.5.5Brunauer-Emmett-Teller theory (BET) 36
3.5.6場發射槍掃描式電子顯微鏡(SEM) 37
3.6半電池組裝 38
3.7數學模型 39
3.8參數量測 42
3.9模型網格數敏感度分析 46
3.10超級電容器組裝 47
3.11超級電容器性能檢測 48
第四章 結果與討論 51
4.1材料分析 51
4.1.1電子顯微鏡 51
4.1.2XRD 54
4.1.3FTIR 55
4.1.4三電極電化學檢測 56
4.1.5二氧化錳@網狀玻璃碳-鋰半電池檢測 58
4.1.6鋰半電池檢測 63
4.2參數測量結果 64
4.2.1厚度量測 65
4.2.2電極比表面積 66
4.2.3電極孔隙率 67
4.2.4活性碳電極比電容值 (Cdl) 68
4.2.5交換電流密度 69
4.2.6電解質離子導電度 71
4.2.7鋰離子擴散係數 72
4.2.8離子遷移數 73
4.3模擬結果 75
4.4實驗結果 80
4.4.1全固態超級電容器檢測 87
4.4.2循環伏安法 88
4.4.3充放電實驗 89
4.4.4長時間充放電 90
4.5混合型超級電容器實際應用測試 92
第五章 結論 94
5.1 結論 94
5.2 未來展望 96
參考文獻 97
dc.language.isozh-TW
dc.title以模擬引導提升二氧化錳@網狀玻璃碳及活性碳全固態混合型電容器之功率及能量密度zh_TW
dc.titleSimulation Guided All-Solid-State Hybrid Capacitor Based on MnO2@ RVC //AC with Boosted Power and Energy Densityen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張豐丞(Feng-Cheng Chang),陳賢燁(Hsien-Yeh Chen),郭彥廷(Yan-Ting Kuo)
dc.subject.keyword全固態超級電容器,數學模型,模擬預測,最佳化,二氧化錳@網狀玻璃碳,膠體聚合物電解質,zh_TW
dc.subject.keywordall-solid-state supercapacitor,mathematical model,simulation prediction,optimization,MnO2@RVC,gel polymer electrolyte,en
dc.relation.page105
dc.identifier.doi10.6342/NTU202002846
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-1008202017250600.pdf
  目前未授權公開取用
6.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved