Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50933
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃振康
dc.contributor.authorYun-Ching Leongen
dc.contributor.author梁婉婧zh_TW
dc.date.accessioned2021-06-15T13:07:27Z-
dc.date.available2019-07-25
dc.date.copyright2016-07-25
dc.date.issued2016
dc.date.submitted2016-06-30
dc.identifier.citation王嘉慶,謝學真,呂宗昕。TiO2 光觸媒對大腸桿菌殺菌作用之探討。2004。碩士學位論文。台北:國立台灣大學化學工程學研究所。
江宜陞,黃振康。2014。氣相臭氧於封閉空間中之殺菌效率評估。學士專題論文。台北:國立台灣大學生物產業機電工程學系。
梁婉婧,黃振康。2015。光觸媒反應器對於丙酮及氨氣降解效率之探討。台灣農學會報,16(3), 279-292.
藤島昭,橋本和仁,渡部俊也。2006。圖解光觸媒。台灣: 世茂出版
周明顯等。2004。事業臭味防制技術及管制策略之探討---臭味源及污染現況調查---總計畫暨子計畫一: 農業臭味源及污染現況調查, 生處洗滌技術研發. 2004.
Adán, C., Bahamonde, A., Oller, I., Malato, S., & Martínez-Arias, A. (2014). Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts.Applied Catalysis B: Environmental, 144, 269-276.
Ao, C. H., & Lee, S. C. (2003). Enhancement effect of TiO2 immobilized on activated carbon filter for the photodegradation of pollutants at typical indoor air level. Applied Catalysis B: Environmental, 44(3), 191-205.
Ao, C. H., & Lee, S. C. (2004). Combination effect of activated carbon with TiO2 for the photodegradation of binary pollutants at typical indoor air level. Journal of Photochemistry and Photobiology A: Chemistry, 161(2), 131-140.
Bourgeois, P. A., Puzenat, E., Peruchon, L., Simonet, F., Chevalier, D., Deflin, E., & Guillard, C. (2012). Characterization of a new photocatalytic textile for formaldehyde removal from indoor air. Applied Catalysis B: Environmental, 128, 171-178.
Cordero-García, A., Guzmán-Mar, J. L., Hinojosa-Reyes, L., Ruiz-Ruiz, E., & Hernández-Ramírez, A. (2016). Effect of carbon doping on WO3/TiO2 coupled oxide and its photocatalytic activity on diclofenac degradation. Ceramics International.
Costa, A., Chiarello, G. L., Selli, E., &Guarino, M. 2012. Effects of TiO2 based photocatalytic paint on concentrations and emissions of pollutants and on animal performance in a swine weaning unit. Journal of environmental management. 96(1): 86-90.
Dobeic, M., &Pintarič, Š. 2011. Laying hen and pig livestock contribution to aerial pollution in Slovenia. Actaveterinaria. 61(2-3): 283-293.
Esterkin, C. R., Negro, A. C., Alfano, O. M., & Cassano, A. E. (2002). Radiation field inside a reactor of glass‐fiber meshes coated with TiO2. AIChE journal, 48(4), 832-845.
Fu, C., Gong, Y., Wu, Y., Liu, J., Zhang, Z., Li, C., & Niu, L. (2016). Photocatalytic Enhancement of TiO2 by B and Zr Co-Doping and Modulation of Microstructure. Applied Surface Science.
Guarino, M., Costa, A., &Porro, M. 2008. Photocatalytic TiO2 coating—to reduce ammonia and greenhouse gases concentration and emission from animal husbandries. Bioresource Technology. 99(7): 2650-2658.
Han, Z., Chang, V. W., Zhang, L., Tse, M. S., Tan, O. K., & Hildemann, L. M. (2012). Preparation of TiO2-coated polyester fiber filter by spray-coating and its photocatalytic degradation of gaseous formaldehyde. Aerosol Air Qual. Res, 12, 1327-1335.
Hernandez, J. M. G. (2012). Photocatalytic Reactors for Air Treatment: Energy Efficiencies and Kinetic Modeling (Doctoral dissertation, The University of Western Ontario).
Il'Chenko, N. I., &Golodets, G. I. 1975. Catalytic oxidation of ammonia: I. Reaction kinetics and mechanism. Journal of Catalysis. 39(1): 57-72.
Karunakaran, C., Abiramasundari, G., Gomathisankar, P., Manikandan, G., & Anandi, V. (2010). Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. Journal of colloid and interface science, 352(1), 68-74.
Karunakaran, C., Vijayabalan, A., Manikandan, G., & Gomathisankar, P. (2011). Visible light photocatalytic disinfection of bacteria by Cd–TiO2. Catalysis Communications, 12(9), 826-829.
Kribus, A., Zik, O., & Karni, J. (2000). Optical fibers and solar power generation. Solar Energy, 68(5), 405-416.
Larson, S. A., Widegren, J. A., & Falconer, J. L. (1995). Transient studies of 2-propanol photocatalytic oxidation on titania. Journal of Catalysis, 157(2), 611-625.
Liang, W. J., Li, J., &Jin, Y. Q. 2010. Photocatalytic degradation of gaseous acetone, toluene, and p-xylene using a TiO2 thin film. Journal of Environmental Science and Health Part A. 45(11): 1384-1390.
Matsunaga, T., Tomoda, R., Nakajima, T., & Wake, H. 1985. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology letters. 29(1-2): 211-214.
Marinangeli, R. E., & Ollis, D. F. (1977). Photoassisted heterogeneous catalysis with optical fibers: I. Isolated single fiber. Kribus et al. (2000), 23(4), 415-426.
Matos, J., Laine, J., & Herrmann, J. M. (1998). Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Applied Catalysis B: Environmental, 18(3), 281-291.
Noguchi, T., Fujishima, A., Sawunyama, P., & Hashimoto, K. (1998). Photocatalytic degradation of gaseous formaldehyde using TiO2 film.Environmental science & technology, 32(23), 3831-3833.
Peill, N. J., & Hoffmann, M. R. (1995). Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol. Environmental science & technology, 29(12), 2974-2981.
Shie, J. L., Lee, C. H., Chiou, C. S., Chang, C. T., Chang, C. C., & Chang, C. Y. (2008). Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. Journal of Hazardous Materials, 155(1), 164-172.
Torimoto, T., Okawa, Y., Takeda, N., & Yoneyama, H. (1997). Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane. Journal of Photochemistry and photobiology A: Chemistry, 103(1), 153-157.
Uddin, M. N., Shibly, S. U. A., Ovali, R., Islam, S., Mazumder, M. M. R., Islam, M. S., & Bengu, E. (2013). An experimental and first-principles study of the effect of B/N doping in TiO2 thin films for visible light photo-catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 254, 25-34.
Ujhidy, A., Szabó-Bárdos, E., Horváth, O., Horváth, A., & Schmidt, K. 2011. Degradation of organic pollutants in photocatalytic reactors. Hungarian Journal of Industry and Chemistry,.39(3): 381-386.
Vohra, A., Goswami, D. Y., Deshpande, D. A., & Block, S. S. (2006). Enhanced photocatalytic disinfection of indoor air. Applied Catalysis B: Environmental, 64(1), 57-65.
Wang, J., Zhao, Y. F., Wang, T., Li, H., & Li, C. (2015). Photonic, and photocatalytic behavior of TiO2 mediated by Fe, CO, Ni, N doping and co-doping. Physica B: Condensed Matter, 478, 6-11.
Wang, X., Hu, H., Yang, Z., Kong, Y., Fei, B., & Xin, J. H. (2015). Visible light-active sub-5nm anatase TiO2 for photocatalytic organic pollutant degradation in water and air, and for bacterial disinfection. Catalysis Communications, 72, 81-85.
Yang, L., Liu, Z., Shi, J., Hu, H., & Shangguan, W. (2007). Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde. Catalysis Today, 126(3), 359-368.
Yang, X. J., Shu, W. A. N. G., Sun, H. M., Wang, X. B., & Lian, J. S. (2015). Preparation and photocatalytic performance of Cu-doped TiO2 nanoparticles.Transactions of Nonferrous Metals Society of China, 25(2), 504-509.
Yu, K. P., Lee, G. W., Huang, W. M., Wu, C., & Yang, S. (2006). The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds. Atmospheric Environment,40(2), 375-385.
Zuo, G. M., Cheng, Z. X., Chen, H., Li, G. W., & Miao, T. (2006). Study on photocatalytic degradation of several volatile organic compounds. Journal of hazardous materials, 128(2), 158-163.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50933-
dc.description.abstract隨著科技與網路的發展,人們待在室內的時間越來越長,也因此人們對於室內品質變得更加重視。本實驗目的為使用二氧化鈦混合活性碳塗佈於不同基材上,探討不同形式之光觸媒反應器在處理大環境之揮發性有機物質之降解效能。並使用電腦模擬的方式最佳化反應器結構,使流體更容易接觸光觸媒且同時提高污染物在反應器內的滯留時間。製作出一台結合去除空氣中之揮發性有機物質、捕抓懸浮粒子及殺菌效果的空氣清淨狀裝置。
實驗製作三種光觸媒純二氧化鈦 P25、二氧化鈦混合活性碳、MTA,並比較出降解效果最好的一種。實驗結果顯示在小空間之清淨裝置一中,三種光觸媒二氧化鈦 P25、二氧化鈦混合1g活性碳、MTA之殘留比率分別為2.3 × 10-3、0.5 × 10-3及6.7 × 10-3;置於725 L大環境採樣箱內的空氣清淨裝置二之殘留比率分別為0.8099、0.7950、0.8357 ;置於725 L大環境採樣箱內的空氣清淨裝置三之殘留比率分別為0.8093、0.7544、0.9484 。再比較混合1、2、3g活性碳之降解效能。實驗結果顯示混合3g活性碳時之降解程度最佳,因此選取二氧化鈦混合3g活性碳為後續實驗之光觸媒材料。
在反應器方面,使用清淨裝置四可得到最佳結果。進行丙酮降解實驗,清淨裝置四之殘留濃度為18.9 × 10-3 ppm;清淨裝置三為83.1 × 10-3 ppm。選用清淨裝置四為後續實驗之反應器。在降解氨氣的實驗中,實驗7小時後氨氣濃度從8.8 ppm下降至 0.1114 ppm。進行高濃度甲醛降解實驗,實驗160分鐘後,甲醛濃度從3.257 ppm下降至13.0 × 10-3 ppm。模擬真實室內甲醛污染情況,控制甲醛起始濃度在0.111 ppm,實驗四分鐘後,濃度下降至0.072 ppm。同時發現,二氧化鈦混合活性碳光觸媒擁有非常好的吸附能力,能吸附反應中產生的副產物。
本實驗也進行了初步的光觸媒再生實驗。實驗結果顯示1g的光觸媒材料在照光兩小時後之降解效能有提升的現象;在照光4小時後,光觸媒材料降解效能變得更好。光源及亮度對於光催化反應非常重要,光衰減的實驗結果顯示,實驗前光亮度平均值為4.02 mWcm-2,燈管連續開啟 72 小時後,光亮度之均值為4.00 mWcm-2。證明實驗所使用之紫外燈管有一定的耐用性,實驗中紫外光亮度並不會有明顯的衰減。測試反應器內裝置四支燈管,降解效能為最佳。在殺菌實驗中,結果顯示直接照射紫外光時之細菌存活率為零。
旋風筒反應器進行了光催化反應動力分析,結果顯示當光觸媒塗佈面積減半的時候反應速率為3.5 × 10-4
zh_TW
dc.description.abstractPeople stay indoor most of the time, optimizing the indoor air quality become more important. The purposes of this study are to investigate the photodegradation efficiency of TiO2 P25, TiO2 mixed active carbon and MTA in four photocatalytic reactors. Using CFD modeling to observe the air flow inside the cyclone and optimizing the structure to increase the opportunity of the pollutant to touch photocatalyst. Developing an air cleaner for photodegradation of VOCs, particulate matter captured and disinfection.
The results show that the photodegradation rate of acetone in photocatalytic reactor l by using TiO2 P25, TiO2 mixed active carbon and MTA as photocatalyst are 2.3 × 10-3, 0.5 × 10-3, 6.7 × 10-3 , respectively. While, the photocatalytic reactor 2 in 725 L test chamber are 0.8099、0.7950、0.8357 ppm, respectively and for the photocatalytic reactor 3 are 0.8093、0.7544、0.9484 . Comparison the photodegradation rate of mixing 1, 2, 3g active carbon. The result shows that the photodegradation rate of using TiO2 mixed 3g actived carbon is the best.
Cyclone photocatalytic reactor has the best photodegradation efficiency. The photodegradation rate of acetone in photocatalytic reactor 4 and 3 are 18.9 × 10-3 ppm and 83.1 × 10-3 , respectively. The concentration of ammonia in photocatalytic reactor 4 after UV-irradiation for 7hr decreases from 8.8 ppm to 0.1114 ppm. The cyclone photocatalytic reactor has high photodegradation efficiency of HCHO. The concentration of HCHO decreases from 3.257 ppm to 0.013 ppm after UV-irradiation for 160 min. For simulate a real situation of polluted environment, the initial concentration of HCHO has been controlled at 0.111ppm. The concentration of HCHO attained to a value of 0.072 ppm in 4 min. In addition, active carbon can adsorb the side products that are generated from the photocatalytic process.
In regeneration experiment, 1g of photocatalyst after UV-irradiation for 2hr, the capability of photodegrade has been improved and UV-irradiation for 4hr has the best result. The UV lamps in this study won’t decay significantly after turn on 72hr. The intensity before 72hr is 4.02mWcm-2, after turn on for 72hr the intensity becomes to 4.00 mWcm-2. Four UV lamps are inserted inside the cyclone. After UV-irradiation, E.coli has a zero survival rate.
In kinetic analysis, the reaction rate of photocatalyst coating area is half and full are 3.5 × 10-4
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:07:27Z (GMT). No. of bitstreams: 1
ntu-105-R03631046-1.pdf: 2685273 bytes, checksum: 0f8356ca81ac857289c0361de3d2c523 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
目     錄 viii
圖目錄 x
表目錄 xiii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章文獻探討 3
2.1光觸媒催化反應原理 3
2.2光觸媒對於清淨空氣上的相關研究 4
第三章實驗設備與方法 14
3.1實驗設備 15
3.1.1 定速空氣採樣幫浦 15
3.1.2攜帶式VOCs偵測儀 (Portable Handheld VOC Monitor) 16
3.1.3甲醛濃度偵測器 16
3.1.4二氧化碳濃度計 17
3.1.5光亮度計 18
3.1.6風速計 18
3.1.7光觸媒反應器 19
3.2光觸媒製作 21
3.2.1 純二氧化鈦P25 21
3.2.2 二氧化鈦混合活性碳 21
3.2.3 MTA製作 22
3.3光觸媒降解丙酮 22
3.3.1第一系列降解實驗 23
3.3.2第二系列解實驗及紫外燈光亮度測試 24
3.3.3第三系列降解實驗 24
3.4光觸媒降解氨氣 24
3.5光觸媒降解甲醛 24
3.6 光觸媒催化反應之動力模式(Kinetics)分析 25
3.7 旋風筒CFD分析 25
第四章 結果與討論 27
4.1 光觸媒降解方程式 27
4.2第一系列降解實驗結果 27
4.3第二系列降解實驗結果 31
4.4第三系列降解實驗結果 35
4.5 光觸媒降解氨氣 36
4.7光觸媒降解甲醛 37
4.8入口風速對光觸媒催化反應的影響及其反應速率 39
4.9光觸媒再生 41
4.10旋風筒之CFD模擬結果 43
結論 49
建議 51
參考文獻 51
附錄 55
1.光觸媒殺菌 55
1.1 培養基製備 55
1.2 培養液製作 55
1.3 培養大腸桿菌 55
1.4 製作PBS緩衝溶液 56
1.5 定量及依序稀釋大腸桿菌 56
1.6 塗盤 57
1.7 光觸媒殺菌 57
2.光觸媒殺菌效率分析結果 58
dc.language.isozh-TW
dc.subject甲醛降解zh_TW
dc.subject揮發性有機物質zh_TW
dc.subject光觸媒反應器zh_TW
dc.subject旋風筒CFD模擬zh_TW
dc.subject揮發性有機物質zh_TW
dc.subject光觸媒反應器zh_TW
dc.subject旋風筒CFD模擬zh_TW
dc.subject甲醛降解zh_TW
dc.subjectCFD modeling of cycloneen
dc.subjectPhotocatalytic reactoren
dc.subjectVolatile oganic compoundsen
dc.subjectPhotodegardation of HCHOen
dc.subjectPhotocatalytic reactoren
dc.subjectVolatile oganic compoundsen
dc.subjectPhotodegardation of HCHOen
dc.subjectCFD modeling of cycloneen
dc.title具降解丙酮、氨氣及甲醛空氣清淨裝置之研發zh_TW
dc.titleDeveloping An Air Cleaner for Photodegradation of Acetone, Ammonia and Formaldehydeen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周楚洋,羅金翔
dc.subject.keyword揮發性有機物質,光觸媒反應器,旋風筒CFD模擬,甲醛降解,zh_TW
dc.subject.keywordVolatile oganic compounds,Photocatalytic reactor,CFD modeling of cyclone,Photodegardation of HCHO,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201600601
dc.rights.note有償授權
dc.date.accepted2016-06-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved