請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50914完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬(Kung-Bin Sung) | |
| dc.contributor.author | Fan-Hua Ko | en |
| dc.contributor.author | 葛凡華 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:06:13Z | - |
| dc.date.available | 2016-07-25 | |
| dc.date.copyright | 2016-07-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-03 | |
| dc.identifier.citation | [1] 衛生署福利部統計處, 統計資料”民國103年死因統計分析”.
[2] 衛生署福利部統計處, 癌症防治組, 健康統計資料 [3] Van der Waal, I., et al., Oral leukoplakia: a clinicopathological review. Oral oncology, 1997. 33(5): p. 291-301. [4] Brown, J.Q., et al., Advances in quantitative UV–visible spectroscopy for clinical and pre-clinical application in cancer. Current opinion in biotechnology, 2009. 20(1): p. 119-131. [5] Müller, M.G., et al., Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma. Cancer, 2003. 97(7): p. 1681-1692. [6] Fredriksson, I., M. Larsson, and T. Strömberg, Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy. Journal of biomedical optics, 2012. 17(4): p. 047004-047004. [7] Yudovsky, D. and A.J. Durkin, Spatial frequency domain spectroscopy of two layer media. Journal of Biomedical Optics, 2011. 16(10): p. 107005-107005-10. [8] Drezek, R., et al., Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. Journal of biomedical optics, 2003. 8(1): p. 7-16. [9] Arifler, D., et al., Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition. Journal of biomedical optics, 2003. 8(3): p. 484-494. [10] Collier, T., et al., Sources of scattering in cervical tissue: determination of the scattering coefficient by confocal microscopy. Applied optics, 2005. 44(11): p. 2072-2081. [11] Feldchtein, F.I., et al., In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 1998. 3(6): p. 239-250. [12] Clark, A.L., et al., Detection and diagnosis of oral neoplasia with an optical coherence microscope. Journal of biomedical optics, 2004. 9(6): p. 1271-1280. [13] Chang, V.T.-C., et al., Visible light optical spectroscopy is sensitive to neovascularization in the dysplastic cervix. Journal of biomedical optics, 2010. 15(5): p. 057006-057006-9. [14] McGee, S., et al., Model-based spectroscopic analysis of the oral cavity: impact of anatomy. Journal of Biomedical Optics, 2008. 13(6): p. 064034-064034-15. [15] McGee, S., et al., Anatomy-Based Algorithms for Detecting Oral Cancer Using Reflectance and Fluorescence Spectroscopy. The Annals of otology, rhinology, and laryngology, 2009. 118(11): p. 817-826. [16] Amelink, A., et al., Non-invasive measurement of the morphology and physiology of oral mucosa by use of optical spectroscopy. Oral oncology, 2008. 44(1): p. 65-71. [17] Amelink, A., et al., Non-invasive measurement of the microvascular properties of non-dysplastic and dysplastic oral leukoplakias by use of optical spectroscopy. Oral oncology, 2011. 47(12): p. 1165-1170. [18] Arifler, D., et al., Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma. Biophysical journal, 2007. 92(9): p. 3260-3274. [19] Palmer, G.M. and N. Ramanujam, Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms. Applied Optics, 2006. 45(5): p. 1062-1071. [20] Sung, K.-B. and H.-H. Chen, Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study. Journal of Biomedical Optics, 2012. 17(10): p. 107003-107003. [21] Sung, K.-B., et al., Accurate extraction of optical properties and top layer thickness of two-layered mucosal tissue phantoms from spatially resolved reflectance spectra. Journal of Biomedical Optics, 2014. 19(7): p. 077002-077002. [22] 以參數光譜性質建立由漫反射光譜提取粘膜組織參數之方法 = A hybrid method to extract mucosal tissue parameters from reflectance spectra: exploiting spectral properties of parameters / 謝弘柏(Hong-Po Hsieh)[撰] [23] 臨床移動式漫反射光譜系統之建構與實測 = Construction and verification of a portable diffuse reflectance spectroscopy system for clinical studies / 莊閔傑(Min-Jie Chuang)[撰] [24] Liu, Q. and N. Ramanujam, Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Applied optics, 2006. 45(19): p. 4776-4790. [25] Gomes, A.J. and V. Backman, Algorithm for automated selection of application-specific fiber-optic reflectance probes. Journal of biomedical optics, 2013. 18(2): p. 027012-027012. [26] Hennessy, R., et al., Effect of probe geometry and optical properties on the sampling depth for diffuse reflectance spectroscopy. Journal of biomedical optics, 2014. 19(10): p. 107002-107002. [27] Farrell, T.J., M.S. Patterson, and B. Wilson, A diffusion theory model of spatially resolved, steady‐state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Medical physics, 1992. 19(4): p. 879-888.. [28] Wang, L., S.L. Jacques, and L. Zheng, MCML—Monte Carlo modeling of light transport in multi-layered tissues. Computer methods and programs in biomedicine, 1995. 47(2): p. 131-146. [29] Meglinski, I.V. and S.J. Matcher, Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiological measurement, 2002. 23(4): p. 741. [30] Henyey, L.G. and J.L. Greenstein, Diffuse radiation in the galaxy. The Astrophysical Journal, 1941. 93: p. 70-83. [31] Jacques, S., C. Alter, and S.A. Prahl, Angular dependence of HeNe laser light scattering by human dermis. Lasers in the Life Sciences, 1988. 2(4): p. 309-333. [32] Zhong, X., X. Wen, and D. Zhu, Lookup-table-based inverse model for human skin reflectance spectroscopy: two-layered Monte Carlo simulations and experiments. Optics express, 2014. 22(2): p. 1852-1864. [33] Hennessy, R., et al., Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy. Journal of biomedical optics, 2013. 18(3): p. 037003-037003. [34] Martinsen, P., et al., Accelerating Monte Carlo simulations with an NVIDIA® graphics processor. Computer Physics Communications, 2009. 180(10): p. 1983-1989. [35] Fang, Q. and D.A. Boas, Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Optics express, 2009. 17(22): p. 20178-20190. [36] Zhu, C. and Q. Liu, Review of Monte Carlo modeling of light transport in tissues. Journal of biomedical optics, 2013. 18(5): p. 050902-050902. [37] Graaff, R., et al., Condensed Monte Carlo simulations for the description of light transport. Applied optics, 1993. 32(4): p. 426-434. [38] Liu, Q. and N. Ramanujam, Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. Journal of the Optical Society of America A, 2007. 24(4): p. 1011-1025. [39] Su, J.-W., et al., Investigation of influences of the paraformaldehyde fixation and paraffin embedding removal process on refractive indices and scattering properties of epithelial cells. Journal of Biomedical Optics, 2014. 19(7): p. 075007-075007. [40] Lee, C.-K., et al., Diagnosis of oral precancer with optical coherence tomography. Biomedical optics express, 2012. 3(7): p. 1632-1646. [41] Qu, J., et al., Optical properties of normal and carcinomatous bronchial tissue. Applied optics, 1994. 33(31): p. 7397-7405. [42] Nunez, A.S., A physical model of human skin and its application for search and rescue. 2009, DTIC Document. [43] Wyman, D.R., M.S. Patterson, and B.C. Wilson, Similarity relations for anisotropic scattering in Monte Carlo simulations of deeply penetrating neutral particles. J. Comput. Phys., 1989. 81(1): p. 137-150. [44] Einstein, G., et al., Diffuse reflectance spectroscopy for monitoring physiological and morphological changes in oral cancer. Optik-International Journal for Light and Electron Optics, 2016. 127(3): p. 1479-1485. [45] Jacques, S.L., Optical properties of biological tissues: a review. Physics in medicine and biology, 2013. 58(11): p. R37. [46] Saidi, I.S., Transcutaneous optical measurement of hyperbilirubinemia in neonates. 1992. [47] Rajaram, N., et al., Experimental validation of the effects of microvasculature pigment packaging on in vivo diffuse reflectance spectroscopy. Lasers in surgery and medicine, 2010. 42(7): p. 680-688. [48] Fredriksson, I., M. Larsson, and T. Strömberg. Accuracy of vessel diameter estimated from a vessel packaging compensation in diffuse reflectance spectroscopy. in European Conference on Biomedical Optics. 2011. Optical Society of America. [49] Huang, J., et al., Second derivative multispectral algorithm for quantitative assessment of cutaneous tissue oxygenation. Journal of Biomedical Optics, 2015. 20(3): p. 036001-036001. [50] Duyens, L., The flattering of the absorption spectrum of suspensions, as compared to that of solutions. Biochimica et Biophysica Acta, 1956. 19: p. 1-12. [51] Svaasand, L., et al., Therapeutic response during pulsed laser treatment of port-wine stains: dependence on vessel diameter and depth in dermis. Lasers in Medical Science, 1995. 10(4): p. 235-243. [52] Van Veen, R., W. Verkruysse, and H. Sterenborg, Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers. Optics letters, 2002. 27(4): p. 246-248. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50914 | - |
| dc.description.abstract | 漫反射光譜為非侵入式量測系統,目前開發於診斷癌症前病變,目的為診斷發生癌症前的病變狀況,透過非侵入方式早期診斷,使病人能及早治療降低風險。癌前細胞變化於組織結構內部,無法從肉眼觀察,但其變化能反映於組織的光學性質改變。透過蒙地卡羅方法建立組織模型模擬光子於組織中的傳遞與吸收,可計算出不同組織光學參數下的漫反射光譜,再藉由光譜曲線擬合可從活體口腔黏膜量測的光譜定量出組織光學參數。
本研究以區域光譜能提供不同參數資訊為概念,分為兩大部分,先是進行開發一新型擬合模型,改善蒙地卡羅於逆向擬合之缺點,然而分析實際口腔活體光譜時,只是擬合方法的改善不足以修正實際量測與模擬運算上之誤差,因此後半段研究是針對活體光譜的分析與順向模型的調整。 新型擬合模型主要是針對傳統遞迴式光譜擬合方法參數萃取不穩定以及耗費大量時間之缺點,使用新型模型利用漫反射光譜區域波段的敏感度不同,配合事先建立的表格,萃取各參數初估值,降低運算中的不穩定性以求更高精準度;而後將初估參數代入配合表格與矩陣運算,免去曡代過程中針對各變數運算所需的蒙地卡羅,萃取出適當光學參數,提升時間與計算效率。活體光譜分析部分,配合本實驗室硬體系統的架設與量測而得到人體口腔黏膜的漫反射光譜,藉由蒙地卡羅模型分析獲得活體口腔光學特性,然而目前結果不甚理想。藉由修正運算、分析誤差關係、探討真實組織情況等方式,重新檢視順向模擬模型並嘗試改善,以求減少活體光譜計算上的誤差。 | zh_TW |
| dc.description.abstract | Diffuse reflectance spectroscope is a non-invasive method to detect cancer. People use this technique to develop early cancer diagnosis. Patients can accept treatments in time and reduce risk by pre-cancer screening. When carcinoma in situ or even earlier lesions, the tissue pathological changing cannot be detected by visual examination. However, tissue changing under surface corresponds on the different optical properties. The interactions of photon in tissue can be simulated by Monte Carlo method. We can generated the different diffuse reflectance spectra by assigning optical properties. Target spectra are diffuse reflectance spectra which the optical parameters are unknown. Through fitting simulative spectra with target spectra, we can analyze the unknown of target spectra. By detecting diffuse reflectance spectra from oral cavity, we can diagnose early cancer and even quantify optical properties of mucosal tissue.
In this thesis, the main concept is different range of diffuse reflectance which can provide different information of optical properties. There are two majored purposes in this thesis with the main concept: One is developing the new inverse fitting model, the other is investigating in vivo diffuse reflectance spectra. Traditional iterative curve fitting is unsteady and time-consuming by Monte Carlo method. We design a new fitting model which use sensitive features of wavelength depending and combine with looked-up table. Through new inverse fitting model, target spectrum is firstly estimated the initial parameters set, then iteratively calculated by matrix. Finally, we can effectively extract optical properties from target spectrum without as many as times of Monte Carlo method. Diffuse reflectance spectra, from human oral mucosa, are acquired by three optical fibers at different source-detector separations. We extract the optical properties from measured spectra by Monte Carlo and fitting processing. However, there are errors, 19-29%, between simulated fitting and measured target. It cannot be improved by only adjusting inverse fitting model. We are going to research forward model because the different, between simulation and reality, should come from the tissue model used in Monte Carlo calculation. In this part of research, there are discussing of spectra different, surveying tissue model, and adjusting calculated method. Try to approach the simulative model to real mucosal tissue. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:06:13Z (GMT). No. of bitstreams: 1 ntu-105-R03945030-1.pdf: 4308556 bytes, checksum: fae952e84289278ce61c9444dbb041a5 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 i 致謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖表目錄 viii 表格目錄 x Chapter.1 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究問題 2 Chapter.2 理論基礎 4 2.1 漫反射光譜 4 2.2 系統架構 5 2.3 蒙地卡羅 6 2.3.1 蒙地卡羅描述光子於組織中 6 2.3.2 縮放式蒙地卡羅 10 2.4 順向與逆向模型 12 2.5 組織模型 14 Chapter.3 新型萃取參數擬合模型 17 3.1 研究方法 17 3.2 流程設計 18 3.2.1 初始參數粗估(Initial estimation) 19 3.2.2 矩陣疊代運算(Matrix iteration) 22 3.3 測試與評估 24 3.3.1 目標光譜產生 24 3.3.2 步驟總覽 25 3.3.3 初始參數粗估結果 26 3.3.4 矩陣疊代運算結果 27 3.3.5 特例探討 30 Chapter.4 活體光譜分析與改善 32 4.1 初步定量分析 32 4.2 方法與探討 34 4.2.1 演算修改 35 4.2.2 多層模型分析 38 4.2.3 吸收物質探討 40 4.2.4 分段分析 44 4.3 結果與討論 50 4.3.1 定量結果 50 4.3.2 個體比較 54 4.3.3 結論 56 4.3.4 未來展望 57 Chapter.5 參考文獻 58 A 附錄 64 | |
| dc.language.iso | zh-TW | |
| dc.subject | 漫反射光譜 | zh_TW |
| dc.subject | 逆向擬合模型 | zh_TW |
| dc.subject | 活體光譜探討 | zh_TW |
| dc.subject | 漫反射光譜 | zh_TW |
| dc.subject | 蒙地卡羅演算法 | zh_TW |
| dc.subject | 光學參數定量 | zh_TW |
| dc.subject | 光學參數定量 | zh_TW |
| dc.subject | 口腔黏膜組織 | zh_TW |
| dc.subject | 活體光譜探討 | zh_TW |
| dc.subject | 逆向擬合模型 | zh_TW |
| dc.subject | 口腔黏膜組織 | zh_TW |
| dc.subject | 蒙地卡羅演算法 | zh_TW |
| dc.subject | quantifying optical properties | en |
| dc.subject | Diffuse reflectance spectra | en |
| dc.subject | Monte Carlo method | en |
| dc.subject | Oral mucosa | en |
| dc.subject | Inverse fitting model | en |
| dc.subject | In-vivo spectra | en |
| dc.subject | quantifying optical properties | en |
| dc.subject | Diffuse reflectance spectra | en |
| dc.subject | Monte Carlo method | en |
| dc.subject | Oral mucosa | en |
| dc.subject | Inverse fitting model | en |
| dc.subject | In-vivo spectra | en |
| dc.title | 蒙地卡羅於新型逆向擬合模型與活體漫反射光譜研究:口腔黏膜組織 | zh_TW |
| dc.title | New inverse fitting model and investigating in-vivo diffuse reflectance spectra by Monte Carlo: oral mucosa | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉(Chia-Wei Sun),曾盛豪(Sheng-Hao Tseng) | |
| dc.subject.keyword | 漫反射光譜,蒙地卡羅演算法,口腔黏膜組織,逆向擬合模型,活體光譜探討,光學參數定量, | zh_TW |
| dc.subject.keyword | Diffuse reflectance spectra,Monte Carlo method,Oral mucosa,Inverse fitting model,In-vivo spectra,quantifying optical properties, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201600647 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-04 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
