請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50902
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
dc.contributor.author | Chia-Lin Wu | en |
dc.contributor.author | 吳佳霖 | zh_TW |
dc.date.accessioned | 2021-06-15T13:05:27Z | - |
dc.date.available | 2021-10-14 | |
dc.date.copyright | 2016-10-14 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-07-05 | |
dc.identifier.citation | Chapter 1
[1] J. Watson, Sens. Actuators. 1984, 5, 29. [2] A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, K. S. Goto, J. Electrochem. Soc. 1992, 139, 3690. [3] K. Arshak, E. Moore, G. M. Lyons, J. Harris, S. Clifford, Sens. Rev. 2004, 24, 181. [4] W. Yuan, G. Shi, J. Mater. Chem. A 2013, 1, 10078. [5] F. Yavari, N. Koratkar, J. Phys. Chem. Lett. 2012, 3, 1746. [6] S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, A. Abdala, Sens. Actuators B Chem. 2015, 218, 160. [7] X. Liu, S. T. Cheng, H. Liu, S. Hu, D. Q. Zhang, H. S. Ning, Sensors 2012, 12, 9635. [8] S. Basu, A. Dutta, Sens. Actuators B 1994, 22, 83. [9] T. Yajima, Solid State Ionics 1995, 79, 333. [10] R. M. Navarro, M. a. Peña, J. L. G. Fierro, Chemical Reviews 2007, 107, 3952. [11] D. Eliezer, N. Eliaz, O. . Senkov, F. . Froes, Materials Science and Engineering: A 2000, 280, 220. [12] R. Ramachandran, International Journal of Hydrogen Energy 1998, 23, 593. [13] C. Schwandt, D. J. Fray, Ionics 2000, 6, 222. [14] T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sensors and Actuators B: Chemical 2011, 157, 329. [15] A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. [16] A. K. Geim, Science 2009, 324, 1530. [17] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Appl. Phys. Lett. 2008, 92, 151911. [18] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nat. Mater. 2007, 6, 652. [19] C. S. Rout, a. R. Raju, a. Govindaraj, C. N. R. Rao, Solid State Communications 2006, 138, 136. [20] J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, L. Vayssieres, Nanotechnology 2006, 17, 4995. [21] B. S. Kang, Y. W. Heo, L. C. Tien, D. P. Norton, F. Ren, B. P. Gila, S. J. Pearton, Applied Physics A 2005, 80, 1029. [22] J. Wang, B. Singh, J. Park, S. Rathi, I. Lee, S. Maeng, H. Joh, C. Lee, G. Kim, Sensors & Actuators: B. Chemical 2014, 194, 296. [23] K. Anand, O. Singh, M. Pal, J. Kaur, R. Chand, Sensors & Actuators: B. Chemical 2014, 195, 409. [24] O. Lupan, G. Chai, L. Chow, Microelectronic Engineering 2008, 85, 2220. [25] H. Search, C. Journals, A. Contact, M. Iopscience, I. P. Address, 2777, 1. [26] H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, J. Lin, Applied Physics Letters 2005, 86, 1. Chapter 2 [1] J. Tao, A. M. Rappe, Phys. Rev. Lett. 2014, 112, 106101. [2] A. Dabrowski, Adv. Colloid Int. Sci. 2001, 93, 135. [3] F. Schedin, a K. Geim, S. V Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov, Nature materials 2007, 6, 652. [4] C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. Ren, S. J. Pearton, Appl. Phys. Lett. 2011, 99, 243. [5] J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, B. H. Weiller, ACS Nano. 2009, 3, 301. [6] T. O. Wehling, K. S. Novoselov, S. V Morozov, E. E. Vdovin, 2008, 0. [7] A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. [8] Z. P. Chen, W. C. Ren, L. Gao, L. B. Liu, S. F. Pei, H. M. Cheng, Nat. Mater. 2011,10, 424. [9] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109. [10] C. Hu, Modern Semiconductor Devices for Integrated Circuits. Pearson/Prentice Hall, Upper Saddle River, New Jersey(2010). Chapter 4 [1] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, C. Casiraghi, Nano Lett. 2012, 12, 3925. [2] A. C. Ferrari, D. M. Basko, Nat. Nanotechnology 2013, 8, 235. [3] R. Cuscó, E. Alarcón-Lladó, J. Ibanez, L. Artús, J. Jiménez, B. Wang, M. J. Callahan, Phys. Rev. B 2007, 75, 165202. [4] J. J. Hassan, M. A. Mahdi, C. W. Chin, H. Abu-Hassan, Z. Hassan, Sens. Actuators B Chem. 2013, 176, 360. [5] S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, A. Abdala, Sens. Actuators B Chem. 2015, 218, 160. [6] T. Hübert, L. Boon-Brett, G. Black, U. Banach, Sens. Actuators B Chem. 2011, 157, 329. [7] J. Watson, Sens. Actuators. 1984, 5, 29. [8] A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, K. S. Goto, J. Electrochem. Soc. 1992, 139, 3690. [9] K. Arshak, E. Moore, G. M. Lyons, J. Harris, S. Clifford, Sens. Rev. 2004, 24, 181. [10] W. Yuan, G. Shi, J. Mater. Chem. A 2013, 1, 10078. [11] F. Yavari, N. Koratkar, J. Phys. Chem. Lett. 2012, 3, 1746. [12] M. -W. Ahn, K. -S. Park, J. -H. Heo, J. -G. Park, D. -W. Kim, K. J. Choi, J. -H. Lee, S. -H. Hong, Appl. Phys. Lett. 2008, 93, 22. [13] A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, K. Kalantar-zadeh, IEEE Sens. J. 2007, 7, 919. [14] Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, P. Kim, Nano Lett. 2009, 9, 3430. [15] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 2009, 324, 1312. [16] G. Haider, P. Roy, C. -W. Chiang, W. -C. Tan, Y. -R. Liou, H. -T. Chang, C. -T. Liang, W. -H. Shih, Y. -F. Chen, Adv. Funct. Mater. 2016, 26, 620. [17] R. Romero, M. C. López, D. Leinen, F. Martín, J.R. Ramos-Barrado, Mater. Sci. Eng. B 2004, 110, 87. [18] S. M. Song, J. K. Park, O. J. Sul, B. J. Cho, Nano Lett. 2012, 12, 3887. [19] F. Z. Bedia, A. Bedia, D Kherbouche, B. Benyoucef, Int. J. Mater. Eng. 2013, 3, 59. [20] C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. Ren, S. J. Pearton, Appl. Phys. Lett. 2011, 99, 243. [21] J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, B. H. Weiller, ACS Nano. 2009, 3, 301. [22] K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, M. I. Katsnelson, I. V Grigorieva, S. V Dubonos, A. A. Firsov, Nature 2005, 438, 197. [23] M. Yankowitz, J. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, B. J. LeRoy, Nat. Phys. 2012, 8, 382. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50902 | - |
dc.description.abstract | 氣體偵測器應用範圍廣泛,主要在於檢測可燃、有毒及爆炸性氣體,所以通常用於住宅環境、工業建築之安全檢測。傳統的氣體檢測方法依賴於電荷載子傳輸的物理性質變化,這樣的感測時間是非常緩慢的,且感測時間通常是在好幾秒以內的範圍。為了克服這個缺點,在本研究裡我們製造出石墨烯/氧化鋅/P型矽基版的異質結構氣體偵測器。這個新的複合結構可以表現出高靈敏性、快速感測時間以及穩定的重複性,感測機制完全取決於石墨烯的費米能階變化,由於被吸收的氣體分子施予石墨烯電荷載子的傳輸,其橫跨於異質結構的輸出電流改變。工作原理藉由氣體分子施予電荷載子於石墨烯層且不往下層傳輸,導致能帶彎曲改變造成大幅度之電流變化。此外,在本研究中我們也證明不同偏壓下可量測不同氣體,因此本研究有助於發展高性能石墨烯之氣體偵測器。 | zh_TW |
dc.description.abstract | Gas sensors are omnipresent in our daily life owing to their tremendous values in applications spanning from health care to industrial manufacturing. Even though there exist an intensive effort, the performance of the devices still need to be improved. Particularly, the typical response time in the range of seconds and minutes is rather slow due to its intrinsic sensing mechanism related to charge transfer. In this study, we develop a graphene multiple-junctions to achieve the sensor with very high sensitivity (<10 ppm), ultra-fast sensing time (<10 ms) and stable repeatability. The sensing mechanism solely depends on the large change of the Fermi energy (EF) of graphene due to the absorbed molecules, which produces a great change of output current across the heterojunction. The charge induced by the absorbed molecules remains in the graphene layer without transferring into the underlying layer due to the well-designed band alignment among the constituent materials, which results a ultra-fast and highly sensitive performance. Furthermore, we demonstrate that with different polarity of external bias the graphene multiple-junctions sensors can be used to selectively detect different gases. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T13:05:27Z (GMT). No. of bitstreams: 1 ntu-105-R03245001-1.pdf: 1950238 bytes, checksum: 76da05d12fc0c42d623265b612d1fb39 (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | 口試委員會審定書
致謝 i 摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES v Chapter 1 Introduction 1 Chapter 2 Theoretical Background 8 2.1 Gas adsorption theory 8 2.2 Graphene, 2D material 11 2.3 Schottky barrier diodes 14 Chapter 3 Experimental Details 17 3.1 Current-Voltage (I-V) measurement 17 3.2 Gas measurement system 18 3.3 Radio-Frequency (RF) sputtering 19 3.4 Thermal evaporation 21 3.5 Chemical Vapor Deposition system 23 3.6 Sample preparation 25 Chapter 4 Results and Discussion 27 Chapter 5 Conclusion 41 | |
dc.language.iso | en | |
dc.title | 異質結構之高性能石墨烯氣體偵測器 | zh_TW |
dc.title | Graphene based multiple heterojunctions as an effective approach for high-performance gas sensing | en |
dc.type | Thesis | |
dc.date.schoolyear | 104-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林泰源,許芳琪 | |
dc.subject.keyword | 多重異質結構,費米能階變化,氣體偵測器,石墨烯,氧化鋅, | zh_TW |
dc.subject.keyword | multiple heterojunctions,Fermi Level shift,ultra-fast gas sensor,graphene,ZnO., | en |
dc.relation.page | 41 | |
dc.identifier.doi | 10.6342/NTU201600695 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-07-05 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。