請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5089完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林裕彬(Yu-Pin Lin) | |
| dc.contributor.author | Ching-En Tseng | en |
| dc.contributor.author | 曾靖恩 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:51:46Z | - |
| dc.date.available | 2014-08-21 | |
| dc.date.available | 2021-05-15T17:51:46Z | - |
| dc.date.copyright | 2014-08-21 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | 1. Antonopoulos, V. Z. (2001). Simulation of water and nitrogen balances of irrigated and fertilized corn-crop soil. Journal of irrigation and drainage engineering, 127(2), 77-83.
2. Antonopoulos, V. Z. (2008). Modeling of water and nitrogen balance in the ponded water of rice fields. Paddy and Water Environment, 6(4), 387-395. doi: 10.1007/s10333-008-0140-z 3. Antonopoulos, V. Z. (2010). Modelling of water and nitrogen balances in the ponded water and soil profile of rice fields in Northern Greece. Agricultural Water Management, 98(2), 321-330. doi: 10.1016/j.agwat.2010.08.026 4. Aulakh, M. S. (1996). Nitrogen losses and fertilizer N use efficiency in irrigated porous soils. Nutrient Cycling in Agroecosystems, 47(3), 197-212. 5. Aulakh, M. S., Khera, T. S., Doran, J. W., & Bronson, K. F. (2001). Denitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manure. Biology and Fertility of Soils, 34(6), 375-389. 6. Belder, P., Bouman, B., Spiertz, J., Peng, S., Castaneda, A., & Visperas, R. (2005). Crop performance, nitrogen and water use in flooded and aerobic rice. Plant and Soil, 273(1-2), 167-182. 7. Bouman, B. A. M., & van Laar, H. H. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. Agricultural Systems, 87(3), 249-273. doi: 10.1016/j.agsy.2004.09.011 8. Breve, M., Skaggs, R., Parsons, J., & Gilliam, J. (1997). DRAINMOD-N, a nitrogen model for artificially drained soils. Transactions of the ASAE, 40(4), 1067-1075. 9. Buresh, R., & Austin, E. (1988). Direct measurement of dinitrogen and nitrous oxide flux in flooded rice fields. Soil Science Society of America Journal, 52(3), 681-688. 10. Cassman, K., Peng, S., Olk, D., Ladha, J., Reichardt, W., Dobermann, A., & Singh, U. (1998). Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field crops research, 56(1), 7-39. 11. Chauhan, H., & Mishra, B. (1989). Ammonia volatilization from a flooded rice field fertilized with amended urea materials. Fertilizer research, 19(1), 57-63. 12. Chavan, P. V., & Dennett, K. E. (2008). Wetland simulation model for nitrogen, phosphorus, and sediments retention in constructed wetlands. Water, air, and soil pollution, 187(1-4), 109-118. 13. Chin, W.-t., & Kroontje, W. (1963). Urea hydrolysis and subsequent loss of ammonia. Soil Science Society of America Journal, 27(3), 316-318. 14. Cho, J.-Y., & Choi, J.-K. (2001). Nitrogen and phosphorus losses from a broad paddy field in central Korea. Communications in soil science and plant analysis, 32(15-16), 2395-2410. 15. Cho, J.-Y., & Han, K.-W. (2002a). Nutrient losses from a paddy field plot in central Korea. Water, air, and soil pollution, 134(1-4), 215-228. 16. Cho, J.-Y., Kang-Wan, H., Jin-Kyu, C., Young-Joo, K., & Kwang-Sik, Y. (2002b). N and P losses from a paddy field plot in central Korea. Soil science and plant nutrition, 48(3), 301-306. doi: 10.1080/00380768.2002.10409205 17. Chowdary, V. M., Rao, N. H., & Sarma, P. B. S. (2004). A coupled soil water and nitrogen balance model for flooded rice fields in India. Agriculture, Ecosystems & Environment, 103(3), 425-441. doi: 10.1016/j.agee.2003.12.001 18. Chung, S.-O., Kim, H.-S., & Kim, J. S. (2003). Model development for nutrient loading from paddy rice fields. Agricultural Water Management, 62(1), 1-17. 19. Eom, K.-C. (2001). Environmentally beneficial function of rice culture and paddy soil. Rice culture in Asia. International Commission on Irrigation and Drainage, and Korean National Committee on Irrigation and Drainage, Korea, 28-35. 20. Feng, Y., Yoshinaga, I., Shiratani, E., Hitomi, T., & Hasebe, H. (2004). Characteristics and behavior of nutrients in a paddy field area equipped with a recycling irrigation system. Agricultural Water Management, 68(1), 47-60. 21. Feng, Y., Yoshinaga, I., Shiratani, E., Hitomi, T., & Hasebe, H. (2005). Nutrient balance in a paddy field with a recycling irrigation system. Water Science & Technology, 51(3), 151-157. 22. Fillery, I., & De Datta, S. (1986a). Ammonia volatilization from nitrogen sources applied to rice fields: I. Methodology, ammonia fluxes, and nitrogen-15 loss. Soil Science Society of America Journal, 50(1), 80-86. 23. Fillery, I., & Vlek, P. (1986b). Reappraisal of the significance of ammonia volatilization as an N loss mechanism in flooded rice fields Nitrogen economy of flooded rice soils (pp. 79-98): Springer. 24. Forrester, J. W. (1993). System dynamics and the lessons of 35 years A systems-based approach to policymaking (pp. 199-240): Springer. 25. Forrester, J. W. (1997). Industrial dynamics. Journal of the Operational Research Society, 48(10), 1037-1041. 26. Fumoto, T., Kobayashi, K., Li, C., Yagi, K., & Hasegawa, T. (2008). Revising a process‐based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biology, 14(2), 382-402. 27. Gersberg, R., Elkins, B., Lyon, S., & Goldman, C. (1986). Role of aquatic plants in wastewater treatment by artificial wetlands. Water Research, 20(3), 363-368. 28. Ha, S., Dung, P., & Lee, B. (2001). Impacts of agrochemical fertilizer on the aquaticenvironment of paddy fields in Vietnam. Water Science & Technology, 43(5), 193-202. 29. Hama, T., Nakamura, K., Kawashima, S., Kaneki, R., & Mitsuno, T. (2011). Effects of cyclic irrigation on water and nitrogen mass balances in a paddy field. Ecological Engineering, 37(10), 1563-1566. doi: 10.1016/j.ecoleng.2011.03.032 30. Harmsen, E., Gilliam, J., Skaggs, R., & Munster, C. (1991). Variably saturated 2-dimensional nitrogen transport. Paper-American Society of Agricultural Engineers. 31. Healy, R. (1990). Simulation of solute transport in variably saturated porous media with supplemental information on modifications to the US Geological Survey's computer program VS2D: Department of the Interior, US Geological Survey. 32. Hirzel, J., Cordero, K., Fernandez, C., Acuna, J., Sandoval, M., & Zagal, E. (2012). Soil Potentially Mineralizable Nitrogen and Its Relation to Rice Production and Nitrogen Needs in Two Paddy Rice Soils of Chile. Journal of Plant Nutrition, 35(3), 396-412. doi: 10.1080/01904167.2012.639920 33. Hull, V., Parrella, L., & Falcucci, M. (2008). Modelling dissolved oxygen dynamics in coastal lagoons. Ecological Modelling, 211(3), 468-480. 34. Hutson, J., & Wagenet, R. (1991). Simulating nitrogen dynamics in soils using a deterministic model. Soil Use and Management, 7(2), 74-78. 35. Jang, T. I., Kim, H. K., Seong, C. H., Lee, E. J., & Park, S. W. (2012). Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture. Agricultural Water Management, 104, 235-243. doi: 10.1016/j.agwat.2011.12.022 36. Jansson, P.-E., & Andersson, R. (1988). Simulation of runoff and nitrate leaching from an agricultural district in Sweden. Journal of hydrology, 99(1), 33-47. 37. Jemison, J. M., Jabro, J. D., & Fox, R. H. (1994). Evaluation of LEACHM: II. Simulation of nitrate leaching from nitrogen-fertilized and manured corn. Agronomy journal, 86(5), 852-859. 38. Jena, D., & Misra, C. (1990). The fate of 15N tagged urea leached with infiltrating water under rice and bare soil situation. Oryza, 27(1), 40-47. 39. Jeon, J.-H., Yoon, C. G., Donigian Jr, A. S., & Jung, K.-W. (2007). Development of the HSPF-Paddy model to estimate watershed pollutant loads in paddy farming regions. Agricultural Water Management, 90(1), 75-86. 40. Jeon, J.-H., Yoon, C. G., Ham, J.-H., & Jung, K.-W. (2004). Model development for nutrient loading estimates from paddy rice fields in Korea. Journal of Environmental Science and Health, Part B, 39(5-6), 845-860. 41. Jeon, J.-H., Yoon, C. G., Ham, J.-H., & Jung, K.-W. (2005). Model development for surface drainage loading estimates from paddy rice fields. Paddy and Water Environment, 3(2), 93-101. 42. Jing, Q., Keulen, H. v., & Hengsdijk, H. (2010). Modeling biomass, nitrogen and water dynamics in rice–wheat rotations. Agricultural Systems, 103(7), 433-443. doi: 10.1016/j.agsy.2010.04.001 43. Johnsson, H., Bergstrom, L., Jansson, P.-E., & Paustian, K. (1987). Simulated nitrogen dynamics and losses in a layered agricultural soil. Agriculture, Ecosystems & Environment, 18(4), 333-356. 44. Kadlec, R. H., Wallace, S., & Knight, R. L. (1995). Treatment Wetlands: Taylor & Francis. 45. Karamouz, M., & Taheriyoun, M. (2010). Developing a system dynamics model for phosphorous TMDL in reservoir: a case study. Paper presented at the Proceedings of the World Environmental and Water Resources Congress. 46. Katayanagi, N., Ono, K., Fumoto, T., Mano, M., Miyata, A., & Hayashi, K. (2013). Validation of the DNDC-Rice model to discover problems in evaluating the nitrogen balance at a paddy-field scale for single-cropping of rice. Nutrient Cycling in Agroecosystems, 95(2), 255-268. doi: 10.1007/s10705-013-9561-1 47. Kato, T. (2005). Simulation of water quality with the application of system dynamics model for population and land-use changes. Paddy and Water Environment, 3(2), 103-109. 48. Kim, B., & Cho, J. (1995). Nutrient effluence by the outflowing water from the paddy field during rice growing season. Kor. Comm. Irrig. Drain, 2, 150-156. 49. Kyaw, K. M., Toyota, K., Okazaki, M., Motobayashi, T., & Tanaka, H. (2005). Nitrogen balance in a paddy field planted with whole crop rice (Oryza sativa cv. Kusahonami) during two rice-growing seasons. Biology and Fertility of Soils, 42(1), 72-82. doi: 10.1007/s00374-005-0856-5 50. Lohnis, F. (1913). Vorlesungen uber landwirtschaftliche Bakteriologie: Gebruder Borntraeger. 51. Lee, M.-S., Lee, K.-K., Hyun, Y., Clement, T. P., & Hamilton, D. (2006). Nitrogen transformation and transport modeling in groundwater aquifers. Ecological Modelling, 192(1), 143-159. 52. Liang, X. Q., Chen, Y. X., Li, H., Tian, G. M., Ni, W. Z., He, M. M., & Zhang, Z. J. (2007). Modeling transport and fate of nitrogen from urea applied to a near-trench paddy field. Environ Pollut, 150(3), 313-320. doi: 10.1016/j.envpol.2007.02.003 53. Ling, G., & El‐Kadi, A. I. (1998). A lumped parameter model for nitrogen transformation in the unsaturated zone. Water Resources Research, 34(2), 203-212. 54. Mai, V., Hoanh, C., Van Keulen, H., & Hessel, R. (2013). Spatial Modelling for Nitrogen Leaching from Intensive Farming in Red River Delta of Vietnam. Asian Journal of Water, Environment and Pollution, 10(3), 51-61. 55. Marimon, Z. A., Xuan, Z., & Chang, N.-B. (2013). System dynamics modeling with sensitivity analysis for floating treatment wetlands in a stormwater wet pond. Ecological Modelling, 267, 66-79. 56. Maruyama, T., Hashimoto, I., Murashima, K., & Takimoto, H. (2008). Evaluation of N and P mass balance in paddy rice culture along Kahokugata Lake, Japan, to assess potential lake pollution. Paddy and Water Environment, 6(4), 355-362. 57. Mayo, A. W., & Bigambo, T. (2005). Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development. Physics and Chemistry of the Earth, Parts A/B/C, 30(11-16), 658-667. doi: 10.1016/j.pce.2005.08.005 58. Mikkelsen, D., De Datta, S., & Obcemea, W. (1978). Ammonia volatilization losses from flooded rice soils. Soil Science Society of America Journal, 42(5), 725-730. 59. Misawa, S. (1987). Mechanism of the water quality change in paddy fields. Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering. 60. Mishra, B. K., & Misra, B. (1991). Kinetics of nitrification and nitrate reduction during leaching of ammonium nitrate through a limited ultisol profile. J. Indian Soc. Soil Sci., 39, 221-228. 61. Misra, C., & Mishra, B. (1977). Miscible displacement of nitrate and chloride under field conditions. Soil Science Society of America Journal, 41(3), 496-499. 62. Nakasone, H., Kuroda, H., Kato, T., & Tabuchi, T. (2003). Nitrogen removal from water containing high nitrate nitrogen in a paddy field (wetland). Water Science & Technology, 48(10), 209-216. 63. Pathak, H., & Sarkar, M. C. (1995). Nitrogen mineralization in manure amended soils in relation to soil water regime. J. Indian Soc. Soil Sci., 43(2), 267-269. 64. Radzicki, M., & Taylor, R. A. (1997). Introduction to system dynamics: a systems approach to understanding complex policy issues. US Department of Energy's. 65. Rao, P., Jessup, R., & Reddy, K. (1984). Simulation of Nitrogen Dynamics in Flooded Soils1. Soil science, 138(1), 54-62. 66. Reddy, K., Patrick, W., & Phillips, R. (1978). The role of nitrate diffusion in determining the order and rate of denitrification in flooded soil: I. Experimental results. Soil Science Society of America Journal, 42(2), 268-272. 67. Reddy, K. R., Patrick, W. H., & Broadbent, F. E. (1984). Nitrogen transformations and loss in flooded soils and sediments. C R C Critical Reviews in Environmental Control, 13(4), 273-309. doi: 10.1080/10643388409381709 68. Robertson, G., & Groffman, P. (2007). Nitrogen transformations. Soil microbiology, ecology, and biochemistry, 341-364. 69. Rolston, D., & Marino, M. (1976). Simultaneous transport of nitrate and gaseous denitrification products in soil. Soil Science Society of America Journal, 40(6), 860-865. 70. Ruth, M., & Hannon, B. (1997). Modeling dynamic biological systems: Springer. 71. Sahrawat, K. (1980). Urease activity in tropical rice soils and flood water. Soil Biology and Biochemistry, 12(2), 195-196. 72. Savant, N., JAMES, A. F., & McClellan, G. (1985). Effect of soil submergence on urea hydrolysis. Soil science, 140(2), 81-88. 73. Schnoor, J. L. (1996). Environmental modeling: fate and transport of pollutants in water, air, and soil: John Wiley and Sons. 74. Seyfried, M., & Rao, P. (1988). Kinetics of nitrogen mineralization in Costa Rican soils: Model evaluation and pretreatment effects. Plant and Soil, 106(2), 159-169. 75. Shiratani, E., Yoshinaga, I., Feng, Y., & Hasebe, H. (2002). Scenario analysis for reduction of effluent load from agricultural area by recycling use of the drained water. Paper presented at the Proceedings of the Sixth International Conference on Diffuse Pollution, Amsterdam, The Netherlands. 76. Simpson, J., Muirhead, W., Bowmer, K., Cai, G., & Freney, J. (1988). Control of gaseous nitrogen losses from urea applied to flooded rice soils. Fertilizer research, 18(1), 31-47. 77. Singh, K., & Prasad, B. (1992). Volatilization loss of ammonia as influenced by integrated nutrient management in calcareous soils. Journal Of The Indian Society Of Soil Science., 40(1), 82-86. 78. Singh, R., & Kirk, G. J. D. (1993). A model for predicting the fate of nitrogen fertilizer in lowland ricefields. Journal of Soil Science, 44(2), 285-297. doi: 10.1111/j.1365-2389.1993.tb00452.x 79. Stanford, G., & Smith, S. (1972). Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 36(3), 465-472. 80. Takeda, I., Fukushima, A., & Tanaka, R. (1997). Non-point pollutant reduction in a paddy-field watershed using a circular irrigation system. Water Research, 31(11), 2685-2692. 81. Takeda, I., Kunimatsu, T., Kobayashi, S., & Maruyama, T. (1991). Pollutants balance of a paddy field area and its loadings in the water system—Studies on pollution loadings from a paddy field area (II). Trans JSIDRE, 153, 63-72. 82. Toriyama, K. (2002). Estimation of fertilizer nitrogen requirement for average rice yield in Japanese paddy fields. Soil science and plant nutrition, 48(3), 293-300. 83. Vezjak, M., Savsek, T., & Stuhler, E. (1998). System dynamics of euthrophication processes in lakes. European Journal of operational research, 109(2), 442-451. 84. Wang, S., Prasher, S. O., Patel, R. M., Yang, C.-C., Kim, S.-H., Madani, A., . . . Robertson, S. D. (2006). Fate and transport of nitrogen compounds in a cold region soil using DRAINMOD. Computers and electronics in agriculture, 53(2), 113-121. 85. Wang, Y.-C., Lin, Y.-P., Huang, C.-W., Chiang, L.-C., Chu, H.-J., & Ou, W.-S. (2012). A System Dynamic Model and Sensitivity Analysis for Simulating Domestic Pollution Removal in a Free-Water Surface Constructed Wetland. Water, Air, & Soil Pollution, 223(5), 2719-2742. doi: 10.1007/s11270-011-1062-8 86. Wang, Y., Zhang, J., Kong, H., Inamori, Y., Xu, K., Inamori, R., & Kondo, T. (2009). A simulation model of nitrogen transformation in reed constructed wetlands. Desalination, 235(1-3), 93-101. doi: 10.1016/j.desal.2008.01.012 87. Wetselaar, R. (1981). Nitrogen inputs and outputs of an unfertilized paddy field [rice]. Ecological Bulletins (Sweden). 88. Wynn, T. M., & Liehr, S. K. (2001). Development of a constructed subsurface-flow wetland simulation model. Ecological Engineering, 16(4), 519-536. 89. Xuan, Z., Chang, N.-B., Wanielista, M. P., & Williams, E. S. (2013). System Dynamics Modeling of Nitrogen Removal in a Stormwater Infiltration Basin with Biosorption-Activated Media. Journal of environmental quality, 42(4), 1086-1099. 90. Yang, C.-C., Prasher, S. O., Wang, S., Kim, S. H., Tan, C. S., Drury, C., & Patel, R. M. (2007). Simulation of nitrate-N movement in southern Ontario, Canada with DRAINMOD-N. Agricultural Water Management, 87(3), 299-306. 91. Yatazawa. (1977). Cycling of mineral nutrients in agricultural ecosystems. Agro-ecosyst, 4, 177-179. 92. Yoon, K. S., Cho, J. Y., Choi, J. K., & Son, J. G. (2006). WATER MANAGEMENT AND N, P LOSSES FROM PADDY FIELDS IN SOUTHERN KOREA1. JAWRA Journal of the American Water Resources Association, 42(5), 1205-1216. 93. 行政院農業委員會農糧署,民國101年,「臺灣糧食統計要覽(101年)」 94. 韓釗,2002,系統動力學,華泰文化. 95. 張正賢(譯),1988,稻作學精要,國立編譯館。 96. 潘昶儒、余宣穎、黃井約,2008,水稻優質栽培施肥管理模式,花蓮區農業專訊第六十五期。 97. 甘俊二,1979,灌溉系統配水技術之分析與研究,臺大農工系硏究報告334號。 98. 陳昆宏,2011,應用土壤水分及氮平衡耦合模式評估坡地水稻田氮汙染潛勢, 臺北科技大學土木與防災研究所碩士論文。 99. 谭学志, 邵东国, 刘欢欢, & 孙春敏. (2011). 节水灌溉控制排水条件下稻田水氮平衡试验与模拟. 农业工程学报, 27(11), 193-198. 100.ISEE System, 2014 http://www.iseesystems.com/softwares/Education/StellaSoftware.aspx 101. 行政院環保署環境檢驗所 水質檢驗方法http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER 102. 國家實驗研究院台灣颱風洪水研究中心 大氣研究資料庫 https://dbar.ttfri.narl.org.tw/ 103. 行政院農業委員會農糧署 http://www.afa.gov.tw/public_index.asp?CatID=776 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5089 | - |
| dc.description.abstract | 氮平衡在維繫大自然正常運作時扮演相當重要的角色,當中包含許多作用與機制。稻米為世界三大糧食作物,在臺灣亦為重要的主食,水稻田為臺灣農業耕種面積中最多的一種,約26萬公頃。然而農業活動中不適當的施肥,會導致水稻田中的氮素以各種形式的方法散失到環境中,對環境造成污染,進而影響動植物生長甚至危害人類健康。因此了解並量化水稻田中氮素的動態變化將有助於施肥管理及汙染控制。本研究藉由建立實驗尺度的水稻田,透過實驗量測氮平衡中重要的轉換機制。研究共進行兩次實驗,第一次於2012年到2013年未施肥、第二次於2013年到2014年施肥120 (kg N/ha)。實驗量測水體、土壤、植物之氮含量變化。研究結果顯示兩次實驗的灌溉入流與出流氮量主要受到硝酸鹽氮及有機氮所支配。灌溉入流氮量分別為22.59、29.84(kg N/ha),出流氮量分別為8.98、22.91(kg N/ha)。比較兩次實驗的輸入與輸出總氮量分別減少71.09、84.71%,結果證明水稻田確實具有氮素移除的效果。第一次實驗期間,土壤平均總氮含量約為2751.94(kg N/ha)。植物攝取氮量約為14.71(kg N/ha)。第二次實驗期間,土壤平均總氮含量約為2831.86(kg N/ha)。植物攝取氮量約為16.55(kg N/ha)。計算分布於水體、土壤、植物內之氮百分比,發現土壤氮量占整體氮量比例最高,約占總量的99.10~99.78%,隨水稻生長有逐漸下降趨勢。氮素遺失的途徑若與施肥做比較,出流氮量約占施肥氮量的19.09%,植物攝取約占施肥氮量的13.79%。
然而實驗有其限制,未能於實驗量測的氮素轉換機制則透過模式加以量化。本研究以系統動力學的方法建構模式,模式中考量各種氮素的轉換過程,包含揮發作用、硝化作用、脫硝作用、植物攝取等作用。研究結果顯示,透過模式模擬第二次實驗在氮素遺失的途徑中,以脫硝作用為最多,約34.59(kg N/ha),約占施肥氮量的28.83%。本研究所建立簡單的水稻田氮平衡系統動力模式,可用來量化水稻田中氮素轉換之機制。後續研究若能有更多的資料供模式驗證與加入各種不同的施肥情境條件,將可利用模式模擬不同情境下水稻的生長情況、水稻田中水質變化及各種氮素轉換機制的改變,增加氮平衡系統動力模式的使用範圍。以達到提供水稻田施肥管理、汙染控制參考之目標。 | zh_TW |
| dc.description.abstract | Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Rice is one of the main food crops in the world, and it is also the staple food in Taiwan. Paddy fields account for most agriculture cultivated area in Taiwan, which is about 0.26 million ha. However, improper fertilizer application in agriculture activity will cause a plenty of nitrogen losses from paddy field to environment, and then lead to pollution, ecological problems, and even threatening human health. Therefore, it is essential to understand and quantify the nitrogen dynamics in paddy fields for fertilizer management and pollution control. In this study, we build a pilot-scale paddy field and measure the important transformation mechanisms in nitrogen balance. The experiment was conducted two treatments: one was unfertilized in 2012 to 2013 and the other was fertilized 120(kg N/ha) in 2013 to 2014, and we simultaneously measured the nitrogen content in water, soil, and plant. The results show that the irrigation inflows and outflows were dominated by the nitrate and organic nitrogen in both two experiments. The irrigation inflows were 22.59 and 29.84(kg N/ha) and the outflows were 8.98 and 22.91(kg N/ha), respectively. In addition, the paddy field removed 71.09 and 84.71% of the total nitrogen from input, which confirmed that its purification effects. Total nitrogen in the soil were 2751.94 and 2831.86(kg N/ha), and plant uptake were 14.71 and 16.55(kg N/ha), respectively. The results also demonstrate the nitrogen content among water, soil, and plant. During the growth season, soil accounted for most proportion of total nitrogen ,which about 99.10~99.78%, but decreased gradually. In the second experiment, we compared the nitrogen losses with the fertilizer amounts, and the outflow and plant uptake accounted for 19.09 and 13.79% of application amount, respectively.
Although we measured some nitrogen losses in previous experiments, some transformation mechanisms could not be obtained from the measurement. Hence, we used system dynamics approach to developed a model which considered major transformation processes of nitrogen in paddy fields (e.g. volatilization, nitrification, denitrification and plant uptake) to quantify some unknown mechanisms. The results indicate that denitrification is the main nitrogen loss from paddy field, which is 34.59(kg N/ha), and accounts for 28.83% of application amount. The research proposed a simple model which can estimate the temporal dynamics of nitrogen balance in paddy field. In future studies, more data and different kinds of fertilizer application scenarios should be added to the model to simulate the plant uptake, water quality, and changes of transformation processes in paddy fields to provide reference for future fertilizer management and pollution control. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:46Z (GMT). No. of bitstreams: 1 ntu-103-R01622009-1.pdf: 2145504 bytes, checksum: 40bf12671cefdab1e0e864ceb9720c80 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II Abstract IV 圖目錄 IX 表目錄 XI 第一章 緒論 1 1.1研究動機與目的 1 1.2研究流程 3 第二章 文獻回顧 5 2.1水稻田的氮循環 5 2.2氮平衡模式 10 2.3系統動力學 16 第三章 理論與方法 23 3.1研究場址與實驗設計 23 3.2實驗量測 25 3.3水稻田系統動力模式 27 3.3.1水文平衡模式 28 3.3.2氮平衡模式 29 3.4模式率定與驗證 34 第四章 結果與討論 37 4.1量測結果 37 4.1.1第一次實驗結果(未施肥) 37 4.1.2第二次實驗結果(施肥) 45 4.1.3 一二次實驗結果比較與討論 51 4.2模式結果 55 第五章 結論與建議 62 5.1 結論 62 5.2 建議 64 參考文獻 66 附錄一 模場實驗日誌 77 附錄二 水稻植體檢測報告 78 | |
| dc.language.iso | zh-TW | |
| dc.subject | 模擬模式 | zh_TW |
| dc.subject | 水稻田 | zh_TW |
| dc.subject | 氮平衡 | zh_TW |
| dc.subject | 植物攝取 | zh_TW |
| dc.subject | 系統動力學 | zh_TW |
| dc.subject | Plant Uptake | en |
| dc.subject | Simulation Model | en |
| dc.subject | System Dynamics | en |
| dc.subject | Paddy Fields | en |
| dc.subject | Nitrogen Balance | en |
| dc.title | 量測與模擬實驗尺度水稻田之氮平衡動態變化 | zh_TW |
| dc.title | Measuring and modeling the dynamics of nitrogen balance in a pilot-scale paddy field | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童慶斌(Ching-Pin Tung),李明旭(Ming-Hsu Li),陳彥璋(Yen-Chang Chen) | |
| dc.subject.keyword | 水稻田,氮平衡,植物攝取,系統動力學,模擬模式, | zh_TW |
| dc.subject.keyword | Paddy Fields,Nitrogen Balance,Plant Uptake,System Dynamics,Simulation Model, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 2.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
