請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5087完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張孟基(Men-Chi Chang) | |
| dc.contributor.author | Row-Yu Ma | en |
| dc.contributor.author | 馬若瑀 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:51:45Z | - |
| dc.date.available | 2016-08-25 | |
| dc.date.available | 2021-05-15T17:51:45Z | - |
| dc.date.copyright | 2014-08-25 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-14 | |
| dc.identifier.citation | Abdrakhamanova A., Wang Q.Y., Khokhlova L., Nick P. (2003) Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiol., 44: 676–686
Allwood E. G., Anthony R.G., Smertenko A.P., Reichelt S., Drobak B.K., Doonan J.H., Weeds A.G., Hussey P.J. (2002) Regulation of the pollen-specific actin-depolymerizing factor LlADF1. Plant Cell, 14: 2915–2927 Arbona V., Manzi M., Ollas C.de., Gomez-Cadenas A. (2013) Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci., 14: 4885-4911 Blanchoin L., Boujemaa-Paterski1 R., Henty J.L., Khurana P., Staiger C.J. (2010) Actin dynamics in plant cells: a team effort from multiple proteins orchestrates this very fast-paced game. Curr. Opin. Plant Biol., 13: 714–723 Chaves M.M., Maroco J.P., Pereira J.S. (2003) Understanding plant responses to drought – from genes to the whole plant. Functional Plant Biology 30: 239–264. Chen H.C., Hwang S.G., Chen S.M., Shii C.T., Cheng W.H. (2011) ABA-mediated heterophylly is regulated by differential expression of 9-cis-expoxycarotenoid dioxygenase 3 in lilies. Plant Cell Physiol., 52: 1806-1821. Cheng X., Wu Y., Guo J., Du B., Chen R., Zhu L., He G. (2013) A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination. Plant J., 76: 687–698 Chi J., Han Y.C., Wang X.F., Wu L.H., Zhang G.Y., Ma Z.Y. (2013) Overexpression of the Gossypium barbadense actin-depolymerizing factor 1 gene mediates biological changes in transgenic tobacco. Plant Mol. Biol. Rep., 31:833–839 Clough S.J. and Bent A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743 Costa J.M., Grant O.M., Chaves M.M. (2013) Thermography to explore plant–environment interactions. J. Exp. Bot., 64: 3937–3949 D’Angeli S. and Altamura M. (2007) Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta. 225: 1147–1163 Daher F. B. and Geitmann A. (2012) Actin depolymerizing factors ADF7 and ADF10 play distinct roles during pollen development and pollen tube growth. Plant Signal Behav. 7: 879–881 Darwin C. (1859) On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. Murray, John, London. Deeks, Michael J, and Hussey, Patrick J. (2009) Plant actin biology. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net [doi: 10.1002/9780470015902. a0021255] Dong C.H. and Yan H. (2013) Arabidopsis CDPK6 phosphorylates ADF1 at N-terminal serine 6 predominantly. Plant Cell Rep. 32:1715–1728 Dong C.H., Kost B., Xia G., Chua N.H. (2001) Molecular identification and characterization of the Arabidopsis AtADF1, AtADF5 and AtADF6 genes. Plant Mol. Biol. 45: 517–527 Dong C.H., Xi G.X., Hong Y., Ramachandran S., Kost B., Chua N.H. (2001) ADF proteins are involved in the control of flowering and regulate F-Actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell. 13: 1333–1346 Drobak B. K., Franklin-Tong V. E., Staiger C. J. (2004) The role of the actin cytoskeleton in plant cell signaling. New Phytol. 163: 13–30 Durst S., Nick P., Maisch J. (2013) Nicotiana tabacum actin-depolymerizing factor 2 is involved in actin-driven, auxin-dependent patterning. J. Plant Physiol. 170: 1057– 1066 Egierszdorff S. and Kacperska A. (2001) Low temperature effects on growth and actin cytoskeleton organisation in suspension cells of winter oilseed rape. Plant Cell Tiss. Org. 65: 149–158 Eun S.O. and Lee Y. (1997) Actin filaments of guard cells are reorganized in response to light and abscisic acid. Plant Physiol. 115: 1491-1 498 Feng Y., Liu Q., Xue Q.Z. (2006) Comparative study of rice and Arabidopsis actin-depolymerizing factors gene families. J Plant Physiol. 163: 69-79 Fukaki H., Fujisawa H., Tasaka M. (1996) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol. 110: 933–943 Gungabissoon R.A., Jiang C.J., Drobak B.K., Maciver S.K., Hussey P. J. (1998) Interaction of maize actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J. 16: 689–696 Ghulam M. A. and Setsuko K. (2005) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res. 5: 396-403 Henty-Ridilla J.L., Li J., Blanchoin L., Staiger C.J. (2013) Actin dynamics in the cortical array of plant cells. Curr. Opin. Plant Biol. 16: 678–687 Huang Y.C., Huang W.L., Hong C.Y., Lur H.S., Chang M.C. (2012) Comprehensive analysis of differentially expressed rice actin depolymerizing factor gene family and heterologous overexpression of OsADF3 confers Arabidopsis Thaliana drought tolerance. Rice. 5: 33-47 Hussey P,J., Ketelaar T., Deeks M.J. (2006) Control of the actin cytoskeleton in plant cell growth. Annu. Rev. Plant Biol.Annu. Rev. Plant Biol. 57:109–25 Hussey P.J., Yuan M., CalderG., Khan S., Lloyd C. (1998) Microinjection of pollen-specific actin-depolymerizing factor, ZmADF1, reorientates F-actin strands in Tradescantia stamen hair cells. Plant J. 14: 353–357. Hwang J.U. and Lee Y. (2001) Abscisic acid-induced actin reorganization in guard cells of dayflower is mediated by cytosolic calcium levels and by protein kinase and protein phosphatase activities. Plant Physiol. 125: 2120-2128 Jiang C. J., Weeds A.G., Hussey P.J. (1997a) The maize actin depolymerizing factor, ZmADF3, redistributes to the growing tip of elongating root hairs and can be induced to translocate into the nucleus with actin. Plant J. 12: 1035–1043 Jiang C.J., Weeds A.G., Khan S., Hussey P.J. (1997b) F-actin and G-actin are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor (ZmADF). Plant Biol. 94: 9973-9978 Komis G., Apostolakos P., Galatis B. (2002) Hyperosmotic-induced actin filament reorganization in leaf cells of Chlorophyton comosum. J. Exp. Bot. 53: 1699-1710 Krtkova J., Havelkova L., Krepelova A., Fiser ., Vosolsobe S., Novotna ., Martinec J., Schwarzerova K. (2012) Loss of membrane fluidity and endocytosis inhibition are involved in rapid aluminum-induced root growth cessation in Arabidopsis thaliana. Plant Physiol. Biochem. 60: 88-97 Li X.B., Xu D., Wang X.L., Huang G.Q., Luo J., Li D.D., Zhang Z.T., Xu W.L. (2010) Three cotton genes preferentially expressed in flower tissues encode actin-depolymerizing factors which are involved in F-actin dynamics in cells. J Exp. Bot. 61: 41–53 Liu J.X., Raveendran M., Mushtaq R., Ji X.M., Yang X., Bruskiewich R., Katiyar S., Cheng S., Bennett J. (2005) Proteomic analysis of drought-responsiveness in rice: OsADF5 , in: Proceedings of an International Congress “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”, 27–31 May 2003, Bologna, Italy, R. Tuberosa, R. L. Phillips and M. Gale, eds., Avenue media, Bologna, pp. 491–505 Liu S.G., Zhu D.Z., Chen G.H., Gao X.Q., Zhang X.S. (2012) Disrupted actin dynamics trigger an increment in the reactive oxygen species levels in the Arabidopsis root under salt stress. Plant Cell Rep. 31: 1219–1226 Liu W., Ji S., Fang X.L., Wang Q.G., Li Z., Yao F.Y., Hou L., Dai S. (2013) Protein Kinase LTRPK1 influences cold adaptation and microtubule stability in rice. J Plant Growth Regul. 32: 483-490 Lu B., Gong Z.G., Wang J., Zhang J.H., Liang J.S. (2007) Microtubule dynamics in relation to osmotic stress-induced ABA accumulation in Zea mays roots. J. Exp. Bot. 58 : 2565–2572. Maciver S.K., Hussey P.J. (2002) The ADF/cofilin family: actin-remodeling proteins. Biology. 3: reviews 3007.1–3007.12 Malerba M., Crosti P., Cerana R. (2010) Effect of heat stress on actin cytoskeleton and endoplasmic reticulum of tobacco BY-2 cultured cells and its inhibition by Co2+ Protoplasma. 239: 23–30 Marylin V., Laurent B. (2002) Actin polymerization processes in plant cells. Curr. Opin. Plant Biol. 5: 502-506 Marthur J., Spielhofer P., Kost B., Chua N.H. (1999). The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana. Development. 126: 5559–5568. Mazars C., Thion L., Thuleau P., Graziana A., Knight M.R., Moreau M., Ranjeva R. (1997) Organization of cytoskeleton controls changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium. 22: 413–420 Mittler R., Vanderauwera S., Gollery M., Van B.F. (2004) Reactive oxygen gene network of plants. Trends Plant Sci. 9:490–498 Muller J., Menzel D., Samaj J. (2007) Cell-type-specific disruption and recovery of the cytoskeleton in Arabidopsis thaliana epidermal root cells upon heat shock stress. Protoplasma. 230: 231–242 Nick P. (2008) Microtubules as sensors for abiotic stimuli. Plant Cell Monogr. 11: 175-203 Nick P. (2013) Microtubules, signalling and abiotic stress. Plant J. 75: 309–323 Ono S. (2007) Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int. Rev. Cytol. 258: 1-82 Orvar B.L., Sangwan V., Omann F., Dhindsa R.S. (2000) Early steps in cold sensing by plant cells, the role of actin cytoskeleton and membrane fluidity. Plant J. 23:785–794 Osakabe Y., Yamaguchi-Shinozaki K., Shinozaki K., Lam-Son P.T. (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J. Exp. Bot. 64: 445–458 Ouellet F., Carpentier E., Cope M.J.T.V., Monroy A.F., Sarhan Fathey (2001) Regulation of a wheat actin-depolymerizing factor during cold acclimation. Plant Physiol. 125: 360-368 Paque S., Mouille G., Grandont L., Alabadi D., Gaertner C., Goyallon A., Muller P., Primard-Brisset C., Sormani R., Blazquez M.A., Perrot-Rechenmann C. (2014) Auxin binding protein1 links cell wall remodeling, auxin signaling, and cell expansion in Arabidopsis. Plant Cell. 26: 280–295 Peremyslov V.V., Prokhnevsky A.I., Avisar, D., Dolja, V.V. (2008). Twoclass XI myosins function in organelle trafficking and root hair developmentin Arabidopsis. Plant Physiol. 146:1109–1116. Peremyslov, V.V., Prokhnevsky, A.I., Dolja, V.V. (2010). Class XI myosinsare required for development, cell expansion, and F-actin organization inArabidopsis. Plant Cell. 22: 1883–1897. Pokorna J., Schwarzerova K., Zelenkova S., Petrasek J., Janotova I., Capkova V., Opatrny Z. (2004) Sites of actin filament initiation and reorganization in cold treated tobacco cells. Plant Cell Environ. 27:641–653 Pollard T.D. (1986) Actin and actin-binding protein: a critical evaluation of mechanisms and functions. Ann. Rev. Biochem. 55: 987-1035 Porter K., Shimono M., Tian M., Day B. (2012) Arabidopsis Actin-Depolymerizing Factor-4 links pathogen perception, defense activation and transcription to cytoskeletal dynamics. PLoS Pathog 8: e1003006. doi: 10.1371/ journal. ppat. 1003006 Prokhnevsky A.I., Peremyslov V.V., Dolja V.V. (2008). Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc. Natl. Acad. Sci. USA 105: 19744–19749. Reddy A.S. (2001). Molecular motors and their functions in plants. Int. Rev. Cytol. 204: 97–178. Ruzicka D.R., Muthugapatti K.K., Elizabeth C. M., Brunilis B.R., Richard B. M. (2007) The ancient subclasses of Arabidopsis actin depolymerizing factor genes exhibit novel and differential expression. Plant J. 52: 460–472 Sangwan V., Foulds I., Singh J. and Dhindsa R.S. (2001) Cold-activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. The Plant J. 27:1-12 Schmelzer E. (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci. 7: 411-415 Shi H., Lee B.H., Wu S.J., Zhu J.K. (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat. Biotechnol. 21: 81-85 Shimmen T. and Yokota E. (2004). Cytoplasmic streaming in plants. Curr. Opin. Cell Biol. 16: 68–72. Smertenko A.P., Deeks M.J., Hussey P.J. (2010) Strategies of actin reorganisation in plant cells. J Cell Sci. 123: 3019-3028 Tian M., Chaudhry F., Ruzicka D.R., Meagher R.B., Staiger C.J., Day B. (2009) Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol. 150: 815–824 Tominaga M., Kimura A., Yokota E., Haraguchi T., Shimmen T., Yamamoto K., Nakano A., Ito K. (2013) Cytoplasmic streaming velocity as a plant size determinant. Dev. Cell. 27: 345–352 Ueda H., Yokota E., Kutsuna N., Shimada T., Tamura K., Shimmen T., Hasezawa S., Dolja V.V., Hara-Nishimura I.. (2010). Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc. Natl. Acad. Sci. USA 107: 6894–6899. Wan L. and Zhang H. (2012) Cadmium toxicity : Effects on cytoskeleton, vesicular trafficking and cell wall construction. Plant Signal Behav. 7 : 345–348 Wang C., Li J., Yuan M. (2007) Salt tolerance requires cortical microtubule reorganization in Arabidopsis. Plant Cell Physiol. 48: 1534–1547 Wang C., Zhang L., Yuan M., Ge Y., Liu Y., Fan J., Ruan Y., Cui Z., Tong S., Zhang S. (2008) The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis. Plant Biol. 12: 70–78 Wang C. , Zhang L.J., Chen W.F. (2011a) Plant cortical microtubules are putative sensors under abiotic stresses. Biochemistry (Moscow) 76: 320-326 Wang C., Zhang L.J., Huang R.D. (2011b) Cytoskeleton and plant salt stress tolerance. Plant Signal Behav. 6: 29-31 Wasteneys G.O. and Yang, Z. (2004) New views on the plant cytoskeleton. Plant Physiol. 136: 3884–3891 Yamaguchi T., Yamada A., Hong N., Ogawa T., Ischii T., Shibuya N. (2000) Differences in the recognition of glucan elicitor signals between rice and soybean: b-Glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell. 12: 817-826 Yamamoto K. (2008). Plant myosins VIII, XI, and XIII. In Myosins: A Superfamily of molecular motors, L.M. Coluccio, ed. (Berlin: Springer) pp.375–390. Ye J.M., Zhang W.H., Guo Y. (2013) Arabidopsis SOS3 plays an important role in salt tolerance by mediating calcium-dependent microfilament reorganization. Plant Cell Rep. 32: 139–148 Zhao Y., Pan Z., Zhang Y., Qu X.L., Zhang Y.G., Yang Y.Q., Jiang X.N., Huang S.J., Yuan M., Schumaker Karen S., Guo Y. (2013) The actin-related protein2/3 complex regulates mitochondrial-associated calcium signaling during salt stress in Arabidopsis. Plant Cell. 25: 4544–4559 Zheng Y.Y., Xie Y.R., Jiang Y.X., Qu X.L., Huang S.J. (2013) Arabidopsis actin-depolymerizing factor7 severs actin filaments and regulates actin cable turnover to promote normal pollen tube growth. Plant Cell. 25: 3405–3423 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5087 | - |
| dc.description.abstract | 肌動蛋白去聚合因子 (Actin Depolymerizing Factor, ADF) 為一與肌動蛋白結合之蛋白質,其功能為藉由與actin結合將F-actin解聚為G-actin,在細胞中參與了細胞骨架之動態性變化。目前已知ADFs和植物細胞之生長發育、形態、細胞分裂、訊息傳導及生物性逆境相關,然而ADFs與植物非生物逆境耐受性之關連及其功能仍有待探討。因此本論文之實驗以異位表達之方式,利用35S啟動子過量表現水稻OsADF2及OsADF11基因於阿拉伯芥中,並觀察轉殖株與野生型外表型及其在非生物逆境下的反應。結果顯示T3同型結合子之OsADF2和OsADF11轉殖株在一般生長情況下轉殖株葉片大小較野生型阿拉伯芥為大,其抽苔時間與開花時間也較野生型為早。一般環境下發芽時間與野生型無差異。然而在150 mM NaCl的環境下,35S::OsADF2及35S::OsADF11轉殖株的發芽時間較野生型阿拉伯芥為早。另外將5天大及10天大之阿拉伯芥移植至含有150 mM NaCl之培養基後發現OsADF2及OsADF11轉殖株之根部生長及存活率皆大於野生型阿拉伯芥。另外以乾旱、高鹽、低溫逆境處理21天大之OsADF2及OsADF11轉殖株成株,結果顯示OsADF2及OsADF11皆較野生型耐旱,然而OsADF11在低溫處理後植物組織有受傷的情形發生,但此現象只在子葉部分觀察到,而新生葉則與野生型無明顯差異。利用紅外線熱影像檢測植株葉溫之變化,在一般條件下轉殖株與野生型葉溫無差異。另一方面以200 mM NaCl 處理三周大之OsADF2及OsADF11轉殖株及野生型阿拉伯芥,則發現OsADF2轉殖株之葉片溫度與野生型無顯著差異,而OsADF11轉殖株之葉溫則是較野生型為高。利用玉米ubiquitin promoter表現水稻OsADFs基因家族之GFP融合蛋白,接著以暫時性表達分析水稻OsADFs之次細胞定位,結果顯示水稻OsADF2、OsADF3及OsADF11與GFP之融合蛋白於細胞核及細胞質中皆有表現,其中OsADF2與GFP之融合蛋白在葉綠體中也有表現,而OsADF1、OsADF4、OsADF5、OsADF6與GFP之融合蛋白則是皆表現於葉綠體中。由以上之結果推論水稻OsADF2及OsADF11可能與植物面臨高鹽逆境以及乾旱逆境時的耐受機制有關。 | zh_TW |
| dc.description.abstract | Actin Depolymerizing Factors (ADFs) are small actin-binding proteins in cytoskeleton remodeling in cells. Recently, ADFs were reported to play a role in plant growth, development, cell division, signal transduction and pathogen resistance. However the functions of rice ADFs (OsADFs) under abiotic stress still remained to explore. In this thesis, we took heterologous gene expression approach to overexpress rice OsADF2 and OsADF11 in Arabidopsis, and observed the phenotype difference between transgenic and wild type plants under normal growth and abiotic stress. The phenotype of OsADF2 and OsADF11 transgenic plants showed bigger leaves size than Col-0, moreover, the bolting time and flowering time was earlier. The germination rate of transgenic plants had no difference compared to wild-type under normal condition while the germination rate of transgenic plants was faster after treatment with 150 mM NaCl. We also transferred the 5-day old and 10-day old seedlings to the 150 mM NaCl medium and found that the root growth and survival ratio of transgenic plants were both higher than wild-type. Next we grown 21-day old OsADF2, OsADF11 transgenic and wild-type plants under drought, salt and cold stresses, and OsADF2 and OsADF11 transgenic plants tended to be drought tolerance while injury tissue occurred in OsADF11 transgenic plant under cold treatment. Using non-destructive infrared thermography camera recorded the leaf temperature change under salt stress condition, the result showed that no obvious differences were found between transgenic and wild-type plants under normal condition. However OsADF11 transgenic plants showed higher leaf temperature compared to wild-type but not OsADF2 after treatment with 200 mM NaCl. In addition, to understand the subcellular localization of rice OsADFs, we used maize ubiquitin promoter to express rice OsADFs-GFP fusion protein through rice protoplast mediated transformation. The result showed that OsADF3-GFP and OsADF11-GFP were located in the nucleus and cytosol, and OsADF2-GFP was located in thel nucleus, the cytosol and also in chloroplasts. OsADF1, OsADF4, OsADF5 and OsADF6 were located in the chloroplasts. Taken together from above results, our study implied that rice OsADF2 and OsADF11 maybe involve in the plant response to drought and salt stress. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:45Z (GMT). No. of bitstreams: 1 ntu-103-R01621103-1.pdf: 11733743 bytes, checksum: ac826c9564a612433563c388634eedd8 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract v 表目錄 xi 圖目錄 xi 附錄目錄 xii 縮寫字對照 xiii 第一章 前言 1 第二章 前人研究 3 一、 植物在非生物逆境下之反應 3 二、 細胞骨架與肌動蛋白於植物之生長發育及非生物逆境耐受性 4 1. 植物細胞骨架之動態平衡 5 2. 細胞骨架之肌動蛋白感應外界環境因子及內生訊號 6 2. 1. 溫度 6 2. 2. 鹽分 8 2. 3. 乾旱 9 2. 4. 重金屬 10 三、 肌動蛋白去聚合因子(ADF) 10 1. 肌動蛋白去聚合因子 (ADF) 參與植物之生長發育 11 2. 肌動蛋白去聚合因子(ADF) 參與植物之生物逆境耐受性 12 3. 水稻肌動蛋白去聚合因子之相關研究 12 四、 研究目的及實驗架構 13 第三章 材料方法 15 一、 OsADF 基因家族之生物資訊分析 15 二、 試驗材料 15 1. 阿拉伯芥種子 15 2. 水稻種子 15 三、 阿拉伯芥生長條件及不同非生物逆境處理 16 1. 阿拉伯芥生長條件 16 2. 阿拉伯芥生理及外表型觀察之非生物性逆境處理條件 16 2.1 發芽率分析之逆境處理條件 16 2.2 根長分析及存活率之逆境處理條件 17 2.3 成株分析之逆境處理條件 17 2.4 遠紅外線熱感應影像分析鹽逆境處理轉殖株條件 17 四、 阿拉伯芥突變株及轉殖株之分子鑑定 18 1. 植物DNA之萃取 18 2. DNA洋菜瓊脂膠體電泳分析 19 五、 阿拉伯芥突變株及轉殖株之基因表現分析 19 1. RNA之抽取及製備 19 2. RNase Free DNase I 處理 19 3. cDNA 合成之反轉錄反應 20 4. 反轉錄聚合酶連鎖反應 (RT-PCR) 20 六、 阿拉伯芥轉殖株之質粒構築及逆境耐受性測試 20 1. 35S::OsADF2及35S::OsADF11 質粒構築流程 20 2. 異位表現(heterologous expression)水稻基因之阿拉伯芥轉殖 21 3. 大腸桿菌轉型作用 22 3.1 大腸桿菌勝任細胞製備 22 3.2 質粒大腸桿菌轉型 22 3.3 檢測轉型後大腸桿菌質粒colony PCR 22 3.4 大腸桿菌質粒DNA小量純化 23 4. DNA 片段的製備與回收 23 5. 阿拉伯芥基因轉殖 24 5.1 植物材料預備 24 5.2 農桿菌轉型 24 5. 2. 1 農桿菌勝任細胞製備 24 5. 2. 2 質粒農桿菌轉型 24 5. 2. 3 檢測轉型後之農桿菌質粒colony PCR 25 5. 2. 4 阿拉伯芥轉殖 25 6. 阿拉伯芥轉殖株篩選 26 6.1 抗生素篩選轉殖株 26 七、 OsADF基因家族之GFP融合蛋白之次細胞位置分析 26 1. Ub::OsADFs-GFP質粒構築流程 26 2. 水稻材料預備 27 3. 抽取水稻原生質體 27 4. 聚乙二醇(PEG) 轉殖水稻原生質體 27 5. 共軛焦顯微鏡 (confocal microscope) 觀察螢光蛋白表現 28 第四章 結果 29 一、 OsADF2及OsADF11基因於非生物逆境下之基因功能分析 29 1. 異位表現水稻OsADF2及OsADF11基因之阿拉伯芥轉殖株分子鑑定 29 2. 異位表現水稻OsADF2及OsADF11基因之阿拉伯芥轉殖株外表型觀察 29 2.1. 水稻OsADF2及OsADF11基因影響阿拉伯芥植株大小 29 2.2. 水稻OsADF2及OsADF11基因提早植株抽苔開花時間 30 3. 水稻OsADF2基因之基因功能性分析 30 3.1. 阿拉伯芥35S::OsADF2轉殖株之發芽率測定 30 3.2. 阿拉伯芥35S::OsADF2轉殖株於非生物逆境下之觀察 30 3.2.1. 發芽率分析 30 3.2.2. 根長分析 31 3.2.3. 成株觀察 31 4. 水稻OsADF11基因之基因功能性分析 33 4.1. 阿拉伯芥35S::OsADF11轉殖株之發芽率 33 4.2. 阿拉伯芥35S::OsADF11轉殖株於非生物逆境下之觀察 33 4.2.1 發芽率分析 33 4.2.2 根長分析 34 4.2.3 成株觀察 34 二、 水稻肌動蛋白去聚合因子家族 (Actin depolymerizing factor) 之GFP融合蛋白於水稻原生質體之次細胞定位 37 第五章 討論 38 一、 探討水稻OsADF2及OsADF11基因與植物生長發育之關係 38 1. 水稻OsADF2及OsADF11基因可能參與植物之生長發育及開花 38 二、 探討水稻OsADF2及OsADF11基因於非生物下之功能比較 40 1. OsADF2及OsADF11基因參與植物面臨高鹽逆境時的耐受性探討 42 2. OsADF2及OsADF11基因在低溫逆境下之反應探討 44 3. OsADF2及OsADF11基因參與植物面臨乾旱逆境時的耐受性探討 45 三、 水稻OsADF基因家族之GFP融合蛋白次細胞定位結果探討 47 四、 結語 48 參考文獻 49 表目錄 表一、 水稻肌動蛋白去聚合因子(OsADFs) 家族成員基因序號相關資訊 58 表二、 水稻肌動蛋白去聚合因子(OsADFs) 家族成員之次細胞定位 58 圖目錄 圖一、 阿拉伯芥過度表現水稻OsADF2及OsADF11轉殖株之分子鑑定與外表型分析 59 圖二、 阿拉伯芥過度表現水稻OsADF2及OsADF11轉殖株之抽苔及開花時間與野生型Col-0之分析比較 61 圖三、 阿拉伯芥過度表現水稻OsADF2於逆境下根長分析與存活率分析 63 圖四、 阿拉伯芥過度表現水稻OsADF11之於逆境下根長分析與存活率分析 65 圖五、 35S::OsADF2轉殖株成株之乾旱逆境觀察 67 圖六、 35S::OsADF2轉殖株成株之高鹽逆境觀察 69 圖七、 35S::OsADF2轉殖株成株之低溫逆境觀察 70 圖八、 35S::OsADF11轉殖株成株之乾旱逆境觀察 71 圖九、 35S::OsADF11轉殖株成株高鹽之逆境觀察 73 圖十、 35S::OsADF11轉殖株成株之低溫逆境觀察 74 圖十一、 紅外線熱感應影像分析阿拉伯芥過度表現水稻OsADF2及OsADF11轉殖株於200 mM NaCl處理之鹽份逆境下反應 75 圖十二、 水稻OsADFs 基因家族之GFP融合蛋白於水稻原生質體之次細胞定位 77 附錄目錄 附錄一、 水稻和阿拉伯芥之肌動蛋白去聚合因子家族胺基酸的序列比對及親緣演化樹分析 79 附錄二、 水稻肌動蛋白去聚合因子家族基因於不同組織與生長期之表現圖譜 80 附錄三、 基因轉殖表現載體構築之質粒圖 81 附錄四、 訊息傳遞分子與植物肌動蛋白骨架之關聯圖 82 附錄五、 本研究所使用之引子對一覽 83 附錄六、 與肌動蛋白相關之研究整理 84 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非生物逆境 | zh_TW |
| dc.subject | 水稻肌動蛋白去聚合因子 | zh_TW |
| dc.subject | 細胞骨架 | zh_TW |
| dc.subject | 異位表達 | zh_TW |
| dc.subject | 植物生長發育 | zh_TW |
| dc.subject | abiotic stresses | en |
| dc.subject | Actin depolymerizing factor | en |
| dc.subject | Cytoskeleton | en |
| dc.subject | Heterologous expression | en |
| dc.subject | development and growth | en |
| dc.title | 水稻肌動蛋白去聚合因子OsADF2及OsADF11基因異位表達於阿拉伯芥中之功能性分析 | zh_TW |
| dc.title | Functional Analysis of Rice Actin Depolymerizing Factor OsADF2 and OsADF11 by Heterologous Expression in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝旭亮,趙光裕,洪傳揚,黃文理 | |
| dc.subject.keyword | 水稻肌動蛋白去聚合因子,細胞骨架,異位表達,植物生長發育,非生物逆境, | zh_TW |
| dc.subject.keyword | Actin depolymerizing factor,Cytoskeleton,Heterologous expression,development and growth,abiotic stresses, | en |
| dc.relation.page | 84 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 11.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
