Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃光裕
dc.contributor.authorKai-Hsiang Changen
dc.contributor.author張凱翔zh_TW
dc.date.accessioned2021-06-15T13:03:33Z-
dc.date.available2018-09-13
dc.date.copyright2016-09-13
dc.date.issued2016
dc.date.submitted2016-07-06
dc.identifier.citation[1] Ebrahimi, B., “Development of Hybrid Electromagnetic Damper for Vehicle Suspension Systems” Ph.D Thesis, University of Waterloo, Cananda, 2009.
[2] Poynor, J. C., “Innovative Designs for Magneto-rheological Dampers” Mater Thesis, Vurginia Polytechnic Institute and State University, Blacksburg, VA, 2001.
[3] Ahmadian, M., “Design and Development of Magneto Rheological Damper for Bicycle Suspensions”, American Society of Mechanical Engineers, Dynamic Systems & Control Division Publication, DSC-Volume 67, pp. 737-741, 1999.
[4] Ahmadian, M., Poynor, J. C., and Gooch, J.M. “Application of Magneto Rheological Dampers for Controlling Shock Loading”, American Society of Mechanical Engineers, Dynamic Systems & Control Division Publication, DSC-Volume 67, pp. 731-735, 1999.
[5] Dyke, S. J., Spencer Jr. B. F., Sain, M. K., and Carlson, J. D., “Seismic Response Reduction Using Magnetorheological Dampers”, Proceedings of the IFAC World Congress, San Francisco, CA, 1996.
[6] Yang, G., Spencer Jr. B. F., Dyke, S. J., and Sain, M. K., “Large-scale MR fluid dampers: Modeling and dynamic performance considerations”, Engineering Structures, vol. 24(3), pp.309-323, 2002.
[7] Unsal, M., “Semi-active vibration control of a parallel platform mechanism using magnetorheological damping”, PhD Thesis, University of Florida, Gainesville, FL, 2006.
[8] Zhu, X., Jing, X., and Cheng, L., “Magnetorheological fluid dampers: A review on structure design and analysis”, Journal of Intelligent Material Systems and Structures, vol. 23, pp. 839-873, 2012.
[9] Nam, Y. J. and Park, M. K., “Performance Evaluation of Two Different Bypass-type MR Shock Dampers”, Journal of Intelligent Material Systems and Structures, vol. 18, pp. 707–717, 2007.
[10] Cook, E., Hu, W., and Wereley, N. M., “Magnetorheological bypass damper exploiting flow through a porous channel”, Journal of Intelligent Material Systems and Structures, vol. 18, pp. 1197–1203, 2007.
[11] Magnetorheological fluid (MR fluid), Apexmagnets LLC. http://apexmagnets.com/index.php?main_page=index&cPath=7
[12] Carlson, J. D. and Jolly, M. R., “MR Fluid, foam and elastomer devices”, Lord Corporation, Materials Division, 110 Lord Drive, Cary, NC, 27511-7900, USA
[13] Goncalves, F. D., Koo, J. H., and Ahmadian, M., “A review of the state of the art in magnetorheological fluid technologies-Part I: MR fluid and MR fluid models”, The Shock and Vibration Digest, vol. 38(3), pp.203-219, 2006.
[14] Goncalves, F. D., “Characterizing the Behavior of Magnetorheological Fluids at High Velocities and High Shear Rates”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2005.
[15] Wu, C., “Research and Development of Magnetorheological Damper”, Ph.D. dissertation, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, 2007.
[16] Lord Corp., Lord Technical Data, MRF-132DG Magneto-Rheological Fluid.
[17] Goncalves, F. D., “Characterizing the Behavior of Magnetorheological Fluids at High Velocities and High Shear Rates”, Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2005.
[18] Bolt, B. A., “Earthquakes”, 4th edition, W. H. Freeman and Company New York, 2002.
[19] Stanway, R., Sproston, J. L., and Stevens, N. G., “Non-Linear Modelling of an Electro- Rheological Vibration Damper”, Journal of Electrostatics, vol. 20, pp167-184, 1987.
[20] Wen, Y. K., “Method of random vibrations of hysteresis systems”, Journal of Engineering Mechanics Division, ASCE, 102(EM2), 1976.
[21] Spencer, Jr. B. F., Dyke, S. J., Sain, M. K., and Carlon, J. D., “Phenomenological Model of a Magnetorheological Damper”, Journal of Engineering Mechanics, ASCE, 1997.
[22] Fu, Y., Dyke, S. J., and Caicedo, J. M., and Carlson, J. D., “Experimental Verification of Multi-input Seismic Control Strategies for Smart Dampers”, Journal of Engineering Mechanics, ASCE, 1998.
[23] Rao, S. S., “Mechanical Vibrations”, 5th Edition, U.S.A., Wiley, 2010.
[24] Zadeh, L. A., 'Fuzzy logic and its application to approximate reasoning', In: Information Processing 74, pp. 591–594, 1974.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50872-
dc.description.abstract磁流變阻尼器可在無磁場時以被動控制;在外加磁場的作用下,磁流變液由黏度較低的牛頓流體在幾毫秒內變為有高黏度與剪切強度的賓漢流體,隨磁場變化改變阻尼性能吸收結構震動能量。
本論文應用磁流變液體(Magnetorheological fluid,MR fluid)設計同心螺旋流道式磁流變阻尼器。同心螺旋流道的設計有在固定體積內增加流道的長度、使激磁後的磁流變液體流動方向與磁力線方面垂直等特性,且整合流道於阻尼器內具有體積小易安裝的優點。
使用MTS_810拉伸試驗機台測試磁流變阻尼器,測試項目包括位移、速度、阻尼力等。實驗結果顯示在0.25 Hz振幅1 mm的正弦波下,當輸入電流為0 A,阻尼力為304 N;電流為2.0 A時,阻尼力為1034 N,阻尼力動態係數(Dynamic ratio)為3.4 (1034/304)。因此,透過調節磁流變阻尼器的輸入電流就能達到半主動控制阻尼力的目的。
本論文利用數學分析軟體Matlab之分析模組Simulink建構Bouc-Wen磁流變阻尼器模型,再應用基因-模糊控制法作為控制輸入電流產生磁場變化來改變阻尼特性,將系統的位移、加速度和阻尼力作為訊號回饋,模擬一單自由度振動系統。由實驗結果可知磁流變阻尼器的半主動控制減振效果達47.5%。
同心螺旋流道式磁流變阻尼器具有高可調阻尼力範圍、結構緊緻且在無輸入電流狀態下也能產生基本的阻尼力,而且應用基因-模糊控制法驅動電流大小進而改變阻尼特性,可以有效的運用於結構半主動控制減振。
zh_TW
dc.description.abstractMagnetorheological dampers (MR dampers) are the fluid viscous dampers which use MR fluid as working fluid medium. The MR fluid can be transformed from low viscosity Newtonian fluid to Bingham fluid with higher viscosity and shear stress within only microseconds by applying external magnetic field. Thus, the damping characteristic of MR dampers can be effectively controlled to absorb the impact or vibration energy.
In this thesis, a semi-active concentric spiral-flow magnetorheological damper (CSF damper) has been developed with the concentric spiral-flow channel. The spiral channel structure can keep the direction of magnetic field and flow perpendicular, and reduce the total size of CSF damper.
The performance test of CSF damper was measured and conducted by using the MTS_810 tensile machine. The damper has been driven by sine wave movements with specific frequencies and amplitudes. By the result, the damping force is 304 N with the input frequency of 0.25 Hz and amplitude of ±1 mm without applied magnetic field, and reaches its maximum value as 1034 N with 2.0 A as the current to the coil for the applied magnetic field. The dynamic ratio of developed CSF damper is 3.4 (1034/304). Therefore, the semi-active vibration controlling effect can be easily regulated by the modulating of input current.
The CSF damper is modeled based on the Bouc-Wen hysteresis model with MATLAB and Simulink. Furthermore, GA-Fuzzy control method has been adopted where the damping coefficient of CSF damper is controlled by regulating magnetic field. The result shows that the SDOF system can effectively reduce 47.5% of stimulated vibration.
With the concept of the concentric spiral-flow channel, the developed CSF damper can achieve a wide range of dynamic ratio. The passive damping function provides the main damping effect by the viscous drag, and the active damping function realized the adjustable damping. By the utilization of GA-Fuzzy control, the semi-active vibration control can be effectively applied.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:03:33Z (GMT). No. of bitstreams: 1
ntu-105-R03522608-1.pdf: 5572143 bytes, checksum: a4a73e68c978f31551087a4c2ca561b4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
符號表 XI
第 1 章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究目的與方法 7
1.4 論文架構介紹 8
第 2 章 磁流變液體介紹 9
2.1 磁流變液體 9
2.2 磁流變液體工作模式 14
第 3 章 同心螺旋流道式阻尼器之設計開發 15
3.1 概念設計方案 15
3.2 同心螺旋流道式磁流變阻尼器實體化設計 18
3.3 磁路分析與模擬 20
3.3.1 分析模型與參數設定 20
3.3.2 模擬結果與討論 21
3.4 電磁線圈設計 24
3.5 阻尼器流體工作原理與模型 25
3.5.1 閥式液流阻尼器 25
3.5.2 賓漢流體阻尼力 27
第 4 章 磁流變阻尼器之實驗測試 29
4.1 測試設備架構 29
4.2 性能測試 31
第 5 章 磁流變阻尼器之動力模型與理論 41
5.1 Bouc-Wen遲滯模型 41
5.2 基因-模糊控制法與遲滯模型對防振性能之影響 47
5.2.1 振動系統架構 47
5.2.2 基因-模糊控制法(GA-Fuzzy control rule) 50
第 6 章 結論與未來展望 60
參考文獻 61
dc.language.isozh-TW
dc.title半主動同心螺旋流道式磁流變阻尼器之設計開發與特性研究zh_TW
dc.titleDesign and Development of Semi-Active Concentric Spiral-Flow Magnetorheological Damperen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡得民,林沛群,廖先順
dc.subject.keyword螺旋流道,流變液體,阻尼器,基因-模糊控制法,zh_TW
dc.subject.keywordConcentric spiral-flow channel,Magnetorheological fluid,Damper,GA-Fuzzy control rule,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201600699
dc.rights.note有償授權
dc.date.accepted2016-07-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
5.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved