請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5085完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃燦輝(Tsan-Hwei Huang) | |
| dc.contributor.author | Ya-Chu Chiu | en |
| dc.contributor.author | 邱雅筑 | zh_TW |
| dc.date.accessioned | 2021-05-15T17:51:43Z | - |
| dc.date.available | 2015-08-17 | |
| dc.date.available | 2021-05-15T17:51:43Z | - |
| dc.date.copyright | 2014-08-17 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-15 | |
| dc.identifier.citation | 1. Aruga, T., Arai, Y., Tsuno, K. (2007). Non-linear stiffness behavior and analysis of tunnel lining with reinforcing bars. Quarterly Report of RTRI, 48(1), 44-49.
2. Chiu, Y.C., Lee, C.H., Wang, T.T., Huang, T.H. (2011). Study on displacement and deformation patterns of an operational tunnel induced by slope instability. the 24th KKCNN Symposium on Civil Engineering, Dec. 14-16, Hyogo, Japan, 443-446. 3. Chiu, Y.C., Wang, T.T., Huang, T.H. (2013). An innovative approach for recognizing deformation patterns of a built circular tunnel. the 3rd SINOROCK symposium, Jun. 18-20, Shanghai, China, 445-450. 4. Chiu, Y.C., Wang, T.T., Huang, T.H. (2014). Analyzing deformation patterns of operational rock tunnels: A novel characteristic matrix approach, International Journal of Rock Mechanics and Mining Sciences (under revision). 5. Gantmacher, F.R. (2005). Applications of the theory of matrices: Dover. 6. He, W., Wu, Z.S., Kojima, Y., Asakura, T. (2009). Failure mechanism of deformed concrete tunnels subject to diagonally concentrated loads. Computer-Aided Civil and Infrastructure Engineering, 24(6), 416-431. 7. Hisatake, M., Hieda, Y. (2008). Three-dimensional back-analysis method for the mechanical parameters of the new ground ahead of a tunnel face. Tunnelling and Underground Space Technology, 23(4), 373-380. 8. Hoek, E., Brown, E.T. (2002). Underground excavations in rock. Great Britain: Spon Press. 9. Hoek, E., Diederichs, M.S. (2006). Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences, 43(2), 203-215. 10. Huang, K.P., Wang, T.T., Huang, T.H., Jeng, F.S. (2010). Profile deformation of a circular tunnel induced by ambient stress changes. Tunnelling and Underground Space Technology, 25(3), 266-278. 11. Huang, R.Q., Xiao, H.B. (2010). Deformation mechanism of a shallow double-arch tunnel in a sloping rock mass. Bulletin of Engineering Geology and the Environment, 69(1), 89-97. 12. Idris, J., Al-Heib, M., Verdel, T. (2009). Numerical modelling of masonry joints degradation in built tunnels. Tunnelling and Underground Space Technology, 24(6), 617-626. 13. Idris, J., Verdel, T., Al-Heib, M. (2008). Numerical modelling and mechanical behaviour analysis of ancient tunnel masonry structures. Tunnelling and Underground Space Technology, 23(3), 251-263. 14. Kirsch, G. (1898). Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Zeitschrift des Vereines Deutscher In.genieure, 42, 797-807. 15. Kojima, Y., Yashiro, K. (2005). Deformation behavior of tunnel lining due to ground surface loading and unloading above the tunnel. Quarterly Report of RTRI, 46(2), 143-146. 16. Lee, C.H., Chiu, Y.C., Wang, T.T., Huang, T.H. (2013). Application and validation of simple image-mosaic technology for interpreting cracks on tunnel lining. Tunnelling and Underground Space Technology, 34, 61-72. 17. Mohamad, H., Bennett, P.J., Soga, K., Mair, R.J., Bowers, K. (2010). Behaviour of an old masonry tunnel due to tunnelling-induced ground settlement. Geotechnique, 60(12), 927-938. 18. Mohamad, H., Soga, K., Bennett, P.J., Mair, R.J., Lim, C.S. (2012). Monitoring Twin Tunnel Interaction Using Distributed Optical Fiber Strain Measurements. Journal of Geotechnical and Geoenvironmental Engineering, 138(8), 957-967. 19. Obara, Y., Fukushima, Y., Yoshinaga, T., Shin, T., Ujihara, M., Kimura, S., Yokoyama, T. (2011). Measurement of rock stress change by Cross-sectional Borehole Deformation Method (CBDM). Paper presented at the Proceedings of the 12th ISRM Congress, Beijing. 20. Rabcewicz, L.V. (1964). The New Austrian tunnelling method. Water Power, 16, 453-457 (part 1) and 17, 19-24 (part 3). 21. Sakurai, S., Akutagawa, S., Takeuchi, K., Shinji, M., Shimizu, N. (2003). Back analysis for tunnel engineering as a modem observational method. Tunnelling and Underground Space Technology, 18(2-3), 185-196. 22. Sandrone, F., Labiouse, V. (2011). Identification and analysis of Swiss National Road tunnels pathologies. Tunnelling and Underground Space Technology, 26(2), 374-390. 23. Shimamoto, K., Yashiro, K., Kojima, Y., Asakura, T. (2009). Prediction method of tunnel deformation using time-dependent ground deterioration model. Quarterly Report of RTRI, 50(2), 81-88. 24. Stiros, S., Kontogianni, V. (2009). Mean deformation tensor and mean deformation ellipse of an excavated tunnel section. International Journal of Rock Mechanics and Mining Sciences, 46(8), 1306-1314. 25. Terzaghi, K. (1942). Shield tunnels of the Chicago Subway. Journal of Boston Society of Civil Engineers, 29(3), 163–210. 26. Wang, T.T. (2010). Characterizing crack patterns on tunnel linings associated with shear deformation induced by instability of neighboring slopes. Engineering Geology, 115(1-2), 80-95. 27. Wang, T.T., Jaw, J.J., Chang, Y.H., Jeng, F.S. (2009). Application and validation of profile-image method for measuring deformation of tunnel wall. Tunnelling and Underground Space Technology, 24(2), 136-147. 28. Wang, T.T., Jaw, J.J., Hsu, C.H., Jeng, F.S. (2010). Profile-image method for measuring tunnel profile - Improvements and procedures. Tunnelling and Underground Space Technology, 25(1), 78-90. 29. Wang, T.T. (2014). Evolution of and factors affecting a deep-seated creeping slope in southeastern Taiwan (manuscript). 30. Yuan, Y., Bai, Y., Liu, J.H. (2012). Assessment service state of tunnel structure. Tunnelling and Underground Space Technology, 27(1), 72-85. 31. 小島芳之、津野究、佐野信夫、伊藤哲男、馬場弘二、松岡茂、川島義和 (2006):三次元効果を考慮したトンネル覆工のひび割れ進展と力学特性,日本土木學會論文集,第62卷,第1期,第53-66頁(日文)。 32. 日本土木學會 (2003):隧道的變形機制 (蘇藤成譯),財團法人中興工程科技研究發展基金會,台北。 33. 日本土木學會 (2009):隧道的維護管理 (蘇藤成譯),財團法人中興工程科技研究發展基金會,台北。 34. 王泰典、王文禮、黃燦輝 (1994):台灣地區隧道反算分析之應用,海峽兩岸土力學及基礎工程暨地工技術學術研討會論文集,西安,第492~497頁。 35. 王泰典、黃燦輝、鄭富書、薛文城、傅子仁 (2007):台灣隧道襯砌異狀類別之探討,隧道建設,第27卷(增刊:第六屆海峽兩岸隧道與地下工程學術及技術研討會論文集,昆明),第87-92頁。 36. 王泰典、邱雅筑、張世卓、李佳翰(2008):邊坡失穩引致隧道襯砌異狀之探討,地下空間與工程學報,4(4)(總第27期,第七屆海峽兩岸隧道與地下工程學術及技術研討會暨海峽兩岸岩土工程和地下工程青年科技研討會論文集(A卷)),734-741。 37. 王泰典、莊海岳、邱雅筑、李佳翰、鄭富書 (2009):微變監測在營運中隧道穩定評估之應用,第八屆海峽兩岸隧道與地下工程學術與技術研討會論文集,台北,第D2-1~12頁。 38. 王泰典、李佳翰、邱雅筑、黃燦輝 (2011):深層地滑引致隧道變形與襯砌異狀之案例探討,隧道建設,31(增1)(第十屆海峽兩岸隧道與地下工程學術與技術研討會論文集),西安,第116-122頁。 39. 中興工程顧問社 (1992):台20線191k+772嘉寶隧道改善工程評估報告,交通處公路局,台北。 40. 李佳翰 (2013):山岳隧道襯砌異狀肇因診斷技術研究,國立臺北科技大學工程科技研究所,博士論文,台北。 41. 佐野信夫、伊藤哲男、馬場弘二、小島芳之、津野究、川島義和、松岡茂 (2006):ひび割れ進展と剛性変化に基づいたトンネル覆工の健全度評価,日本土木學會論文集,第62卷,第2期,第194-202頁(日文)。 42. 永碁工程顧問公司 (2008):省道20號線嘉寶隧道地區後續監測計畫工作,交通部公路總局。 43. 林澄清、林清洲 (1999):南橫公路台20線191k+772嘉寶隧道工程地質調查及整治規劃案例探討,台灣公路工程,第25卷,第10期,第24-38頁。 44. 青山工程顧問公司 (2000):省道20線191k+772嘉寶隧道長期穩定處理方案評估比較報告,交通部公路局,台北。 45. 青山工程顧問公司 (2000):省道20線191k+772嘉寶隧道邊坡穩定觀測成果總報告,交通部公路局,台北。 46. 陳堯中、姚錫齡、徐力平 (1997):隧道自動化量測系統,隧道設計與施工自動化研討會論文集,台北,第25~44頁。 47. 黃燦輝、鄭富書 (1997):老舊交通隧道之安全檢測、維修與補強技術研訂(I),交通部委託研究計畫報告,台北。 48. 黃燦輝、鄭富書 (1998):老舊交通隧道之安全檢測、維修與補強技術研訂(II),交通部委託研究計畫報告,台北。 49. 黃燦輝、何泰源、姚錫齡、常岐德、張吉佐、李宏徹 (1999):震後隧道結構快速診斷手冊之建立與震後隧道結構快速補強手段,財團法人台灣營建研究院。 50. 黃燦輝、林銘郎、王泰典 (2008):隧道襯砌非破壞性檢測技術之開發,交通部鐵路改建工程局東部工程處,宜蘭。 51. 黃燦輝、鄭富書、王泰典、李維峰 (2009):隧道補強技術與材料之開發,交通部鐵路改建工程局東部工程,宜蘭。. 52. 邱雅筑(2007):隧道剖面量測技術及相應應力增量回溯分析,台灣大學土木工程學系,碩士論文,台北。 53. 邱雅筑、王泰典、鄭富書、黃燦輝 (2008):攝影測量技術於隧道檢測之應用,第七屆海峽兩岸隧道與地下工程學術及技術研討會暨海峽兩岸岩土工程和地下工程青年科技研討會論文集,大連,第247-254頁。 54. 邱雅筑、陳正勳、王泰典、鄭富書、黃燦輝 (2012):襯砌剖面變形特徵曲線與微變監測技術應用於營運中隧道荷載變化之評估,中國土木水利工程學刊,第24卷,第2期,第101-109頁。 55. 許志豪(2008):雷射剖面影像法及剖面變形之成因回溯探討,台灣大學土木工程學系,碩士論文,台北。 56. 翁孟嘉(2001):麓山帶砂岩之力學特性及其與微組構關係研究,台灣大學土木工程學系,博士論文,台北。 57. 張裕沅(2007):乾/濕砂岩力學行為差別初探,台灣大學土木工程學系,碩士論文,台北。 58. 張詠詠(2009):潛移深層地滑邊坡案例之變形特徵與運動歷程探討,臺北科技大學資源工程研究所,碩士論文,台北。 59. 羅百喬(2013):深層地滑邊坡運動歷程暨微地動特性案例研究,臺北科技大學資源工程研究所,碩士論文,台北。 60. 蔡立盛(2005):砂岩隧道彈塑性模式之分析與探討,台灣大學土木工程學系,博士論文,台北。 61. 朝倉俊弘、小島芳之、安東豊弘、佐藤豊、松浦章夫 (1994):トンネル覆工の力學挙動に関する基礎的研究,日本土木學會論文集,第III-27期,第493冊,第79-88頁(日文)。 62. 野城一栄、小島芳之、藤井大三、川上義輝 (2004):欠陥を考慮したトンネル覆工の押し抜き模型実験,日本トンネル工學論文集,第14巻,第123-130頁(日文)。 63. 鹿島工程技術顧問公司 (2003):關山工務段省道20線191k+772嘉寶隧道自動化監測及預警系統-工作監測成果總報告,交通部公路總局,台北。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5085 | - |
| dc.description.abstract | 隧道的分析理論肇始於對彈性介質中存在孔洞時周圍應力應變組成關係之探討,由古典力學封閉解開始,演變至閉合收斂曲線概念後,隧道開挖的理論已逐漸臻成熟。這些既有理論大部分係歐美國家所提出,其地質條件優良,隧道損壞之報導多為開挖階段所發生,建成之後少有異狀出現。故一般皆認為隧道完工後便趨於穩定,對隧道力學行為的了解僅完善至完工為止,關於隧道營運之後出現的異狀,現仍無嚴謹的分析理論提出。
在如今國際間廣泛推動工程結構永續經營的氛圍下,隧道工程勢必將朝永續發展前進,因此掌握隧道全生命週期之力學行為變得極為關鍵,而其中隧道營運後長期安全性和穩定性的評估,是亟需補足的一環。受板塊運動頻繁、岩石膠結相對較差等因素影響,針對營運中隧道行為之研究目前以我國和日本較多。相關研究多係假設特定造成隧道安全性下降的因子,如岩體參數弱化、隧道結構劣化,或者外力變化,以模型試驗或數值模擬探討因子對隧道的影響;另有一類乃是蒐集大量隧道案例,將隧道異狀定性分類,透過監測資料確定案例異狀肇因後,由統計理論或經驗推斷歸納隧道異狀與肇因的關聯性。然既有方法與評估營運中隧道結構安全與力學行為之需求間仍存在落差,如何有效定義隧道結構狀態,係目前隧道永續發展之門檻。 本研究由隧道變位著手,開發一隧道變位分析方法,提供特殊的變位模態,用以解析隧道營運後複雜的變位。營運中隧道多變而繁複的異狀與變位一向為了解其行為的重要指標,也是困擾隧道工程師與研究者已久的問題。將隧道二維斷面變位視為一個向量,假定該向量可以拆解為每個監測點上產生單位變位的隧道變位之和,以有限元素軟體為工具獲取監測點上產生單位變位的隧道變位後,通過矩陣和向量推導,本研究提出物理意義明確、彼此間相互獨立正交的變位模態,稱之為特徵模態。模態中包含斷面整體平移、旋轉,以及各種隧道純變形行為如純剪、三角變形、方形變形、五角變形等,當監測點數增加,解析能力亦隨之提升。對於圓形斷面、橢圓形斷面和馬蹄形斷面之分析結果顯示不同斷面形狀有其相應之特徵模態,橢圓形斷面和圓形斷面隧道的特徵模態形態相近,但馬蹄形隧道則在左右側壁下部與仰拱之間有較特殊的形態出現。岩體彈性模數的上升則使得特徵模態徑向方向分量變小。 有鑑於現今隧道變位監測技術囿於精度不足、斷面監測點不夠、無法獲取監測點絕對坐標以致未能有效取得隧道完整變位,本研究與台北科技大學王泰典教授及銢欣公司合作研發高精度量測技術-隧道襯砌微變監測技術,針對營運中隧道之需求,整合衛星定位控制測量、導線控制測量、路線測量暨回歸計算與襯砌三維絕對坐標全斷面測量等多種項目成一完整技術。為了解特徵模態法及微變監測技術的可行性與應用性,實際於台灣某山岳隧道施測,選取其中為期近三年的6次監測成果進行討論,期間導線閉合精度介於1/90,518至1/29,915之間,已達基本控制測量二等導線之精度,高程導線精度為-3.88至5.00 mm(K)^0.5,斷面上單點測量精度在±3-5 mm之間,遠高於其他隧道變位量測技術。獲得之監測資料經由本研究建議的流程處理,並採用特徵模態法分析後,根據其變形特性將隧道分為五個區段,可解釋案例隧道變位之物理含義,提供隧道變位肇因診斷的依據,以至於隧道結構穩定分區或分段的參考。 | zh_TW |
| dc.description.abstract | Analytical approaches of tunnel engineering begins with pursuing the stress-strain relationships around a hole in an elastic media. Start from close-form solution, the development of underground excavation support design method is nearly mature when it comes to convergence-confinement method. The existing methods were mostly proposed by European and American countries, where geological conditions are fairly good, and tunnel damages occur during excavation rather than after completion. Thus, it is generally recognized that tunnels are stable after construction. Understanding of tunnel mechanical behavior reaches only to the end of excavation, no rigorous theories aims to analyze the anomalies of tunnels in operation.
Amid the international fever of advancing sustainable engineering structure, knowing the mechanical behavior throughout the whole service life is the key to future tunnel engineering. However, one the crucial part, the methods to evaluate the long-term safety and stability for tunnels in operation, is still absent. Influenced by frequent plate tectonics and lose rock consolidation, a major researches concerning these topics come from Japan and Taiwan. Some of the researches assume a specific factor that reduce tunnel safety, e.g. weakening of rock mass properties, tunnel structures, or change of external forces, and figure out the consequences by experiments or numerical modeling. The others collect a large amount of tunnel cases, and classify lining anomalies according to the feature. After confirm the cause to lining anomalies by surveillance data, it is possible to generalize the relationships between lining anomalies and its cause by statistics or experiences. However, there is a drop between existing methods and the needs to evaluate the safety and mechanical behavior of tunnels in operation. How to efficiently define tunnel structure conditions is still the threshold to sustainable tunnel engineering. This study focuses on tunnel displacement. An approach is proposed to analyze the complicated tunnel displacements by providing particular displacement modes. Displacements of tunnels in operation, with varied and intricate feature, is always an important index to interpret tunnel behavior, and a difficult problem to engineers or researchers. Regarding the displacements of a two-dimensional tunnel section as a vector, and assume that vector can be decomposed as the sum when a unit displacement occurs on every monitoring points. A finite element software is chosen to be the tool to generate the tunnel displacements. Followed by matrix and vector deduction, this study suggests displacement modes that has definite physical meaning, and independent with each other, the characteristic modes. Characteristic modes includes overall motions like translation and rotation, and also deformations including pure shear, triangular deformation, square deformation, pentagonal deformation,…etc. The ability of characteristic modes to describe tunnel displacements rises as the monitoring points increases. According to the results of circular, elliptic and horseshoe tunnel, the characteristic modes vary with shape of tunnel section. The form of characteristic modes are similar for elliptic and circular tunnels, but horseshoe tunnel possesses exceptional details on the lower part of the sidewalls and on invert. The increase in Young’s modulus of rock mass reduce the radial component of each characteristic mode. In respect that present survey technique cannot obtain the complete tunnel displacements owing to deficient precision, insufficient monitoring points and that the results are not in an absolute coordinate, this study cooperate with Pr. Tai-Tien Wang and Yong-Hsin Ltd. to develop a high precision geodetic survey technique named micro-displacement monitoring technology. This technique incorporate global positioning system, traverse survey, route survey and regression calculation, and three-dimensional global coordinate full section lining survey to be as one technique. To understand the feasibility and applicability of characteristic mode method and micro-displacement monitoring technology, a mountain tunnel located in southeast Taiwan is selected to survey and analyze. The traverse survey precision of six monitoring results within three years is between 1/90,518 to 1/29,915, higher than the required value of second-order traverse. The height survey precision is -3.88 to 5.00 mm(K)^0.5, while the single point precision is ±3-5 mm, higher than other current technique. The monitored data after processed with the procedure suggested by this research indicate that the case tunnel can be divided into five zones according to displacement properties. The zoning explains some of the physical meaning of tunnel displacements, provides a basis for determining the cause to lining anomalies, and may serve as a reference to decide the zoning of structural safety and stability. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-15T17:51:43Z (GMT). No. of bitstreams: 1 ntu-103-D97521009-1.pdf: 15715984 bytes, checksum: a15ecc57fb619380fe02f5014c447f67 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝 辭 ii 摘 要 iii Abstract v 目 錄 I 圖目錄 IV 表目錄 VIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 3 1.4 論文架構與主要內容 5 第二章 文獻回顧 6 2.1 隧道工程分析理論與概念 6 2.2 營運中隧道異狀與影響因素 7 2.3 營運中隧道之力學分析方法 10 2.4 營運中隧道檢監測技術 18 2.5 小結 21 第三章 研究方法 22 3.1 特徵模態法 22 3.1.1 假設條件與限制 23 3.1.2 基本模態 24 3.1.3 特徵模態 26 3.1.4 特徵模態 29 3.1.5 數值案例分析 36 3.1.6 綜合討論 39 3.2 隧道襯砌微變監測技術 42 3.2.1 開發目的 42 3.2.2 技術內涵與流程 43 3.2.3 全斷面測量技術 45 3.2.4 三維變位處理流程 45 3.3 小結 46 第四章 特徵模態法參數分析及適用性探討 48 4.1 隧道形狀 48 4.1.1 圓形隧道 48 4.1.2 橢圓形隧道 48 4.1.3 馬蹄形隧道 55 4.1.4 綜合討論 61 4.2 材料參數 61 4.3 特徵模態法適用性之探討 66 4.3.1 監測點數 67 4.3.2 適用指標 69 第五章 隧道案例監測與應用 75 5.1 案例背景 75 5.1.1 隧道案例背景 75 5.1.2 邊坡潛移特性 76 5.2 案例隧道襯砌微變監測與結果 83 5.2.1 監測歷程與現地測量 83 5.2.2 三維變位資料處理 84 5.3 特徵模態分析 99 5.4 綜合討論 108 5.4.1 隧道之三維變位 108 5.4.2 隧道斷面之平面外變位 108 5.4.3 隧道斷面之平面上變位 111 5.4.4 隧道變形特性之探討 122 5.4.5 小結 123 第六章 結論與建議 124 6.1 結論 124 6.2 建議 126 附錄一 問題與回覆 128 參考文獻 137 作者簡介 141 | |
| dc.language.iso | zh-TW | |
| dc.subject | 營運中隧道 | zh_TW |
| dc.subject | 隧道 | zh_TW |
| dc.subject | 隧道維護 | zh_TW |
| dc.subject | 隧道監測 | zh_TW |
| dc.subject | 隧道變形 | zh_TW |
| dc.subject | tunnel deformation | en |
| dc.subject | tunnel | en |
| dc.subject | tunnel maintenance | en |
| dc.subject | tunnels in operation | en |
| dc.subject | tunnel inspection | en |
| dc.title | 營運中隧道變位模態解析與高精度監測技術之研究 | zh_TW |
| dc.title | Research on displacement modes and development of high-precision geodetic survey technique for tunnels in operation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 王泰典(Tai-Tien Wang) | |
| dc.contributor.oralexamcommittee | 李德河(Der-Her Lee),陳堯中(Yao-Chung Chen),壽克堅(Keh-Jian Shou),鄭富書(Fu-Shu Jeng),林銘郎(Ming-Lang Lin) | |
| dc.subject.keyword | 隧道,隧道維護,隧道監測,隧道變形,營運中隧道, | zh_TW |
| dc.subject.keyword | tunnel,tunnel maintenance,tunnel inspection,tunnel deformation,tunnels in operation, | en |
| dc.relation.page | 143 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2014-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf | 15.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
