請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50857完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡克銓,陳沛清 | |
| dc.contributor.author | Chin-Ta Lai | en |
| dc.contributor.author | 賴晉達 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:02:37Z | - |
| dc.date.available | 2018-07-25 | |
| dc.date.copyright | 2016-07-25 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-10 | |
| dc.identifier.citation | [1] Severn, R. T. (2011). The development of shaking tables–A historical note. Earthquake Engineering and Structural Dynamics; 40:195-213.Rogers FJ. (1906), “Experiments with a shaking machine”, Bulletin of the Seismological Society of America Sep. 1930, 20(3):147–159.
[2] Rogers, F. J. (1906). Experiments with a shaking machine. Bulletin of the Seismological Society of America; 20(3):147-159. [3] Ohtani, K., Ogawa, N., Katayama, T., & Shibata, H. (2002). “Project on 3-D Full-Scale Earthquake Testing Facility (The Second Report).”Public Works Research Institute, Japan. Available at: http://www.pwri.go.jp/eng/ujnr/joint/34/paper/21otani.pdf [4] Gomez, E. G. (1999). Application of the MCS algorithm to the control system of the Bristol shaking table. Doctoral Dissertation, University of Bristol. [5] 建築物耐震設計規範及解說. 頁2-7.營建雜誌社, 2005. [6] 李明興、鄭橙標、鐘立來(1997). 單軸向模擬振動台系統之探討. 國家地震工程研究中心技術報告。報告編號:NCREE-96-005。 [7] Ji, Xiaodong, et al(2009). A substructure shaking table test for reproduction of earthquake responses of high‐rise buildings. Earthquake Engineering & Structural Dynamics 38.12: 1381-1399. [8] Dorf, R. C., and Bishop, R. H. (2011). Modern control systems. p58-60. Pearson, London. [9] Stoten, D. P., and Gómez, E. G. (2001). Adaptive control of shaking tables using the minimal control synthesis algorithm. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,359(1786), 1697-1723. [10] Nakata, N. (2010). Acceleration trajectory tracking control for earthquake simulators. Engineering Structures, 32(8), 2229-2236. [11] Phillips, B. M., Wierschem, N. E., and Spencer, B. F. (2014). Model‐based multi‐metric control of uniaxial shake tables. Earthquake Engineering & Structural Dynamics, 43(5), 681-699. [12] Pintelon, R., and Schoukens, J. (2012). System identification: a frequency domain approach. p17, p32-34, p159-161. John Wiley & Sons, New Jersey. [13] Bendat, J. S. and Piersol A. G. (1986).Random Data: Analysis and Measurement Procedures. p164-166. John Wiley & Sons, New Jersey. [14] Oppenheim, A. V., Schafer, R. W., & Buck, J. R. (1989). Discrete-time signal processing (Vol. 2). p60. Prentice-hall, New Jersey. [15] Davenport, W. B., and William L. R. (1958). An introduction to the theory of random signals and noise. Vol. 159. New York: McGraw-Hill. [16] Levy, E. C(1959). 'Complex-curve fitting.' IRE transactions on automatic control 1: 37-43. [17] Kim, S. B., Spencer Jr, B. F., and Yun, C. B. (2005). Frequency domain identification of multi-input, multi-output systems considering physical relationships between measured variables. Journal of engineering mechanics,131(5), 461-472. [18] Pintelon, R., Guillaume, P., Rolain, Y., Schoukens, J., and Van Hamme, H. (1994). Parametric identification of transfer functions in the frequency domain-a survey. IEEE transactions on automatic control, 39(11), 2245-2260. [19] Chen, C. T. (1995). Linear system theory and design. p6. Oxford University Press, Inc. [20] Dorf, R. C., and Bishop, R. H. (2011). Modern control systems. p487-488. Pearson, London. [21] Ioannou, P., and Fidan, B. (2006). Adaptive control tutorial. p13-27. SIAM, Philadelphia. [22] Chen, C. T. (1999). Linear system theory and design. p255. Oxford University Press, Inc., New York. [23] Zhou, K, John C., and Keith G. (1996). Robust and optimal control. Vol. 40. New Jersey: Prentice hall. [24] Young, P. C., and Willems, J. C. (1972). 'An approach to the linear multivariable servomechanism problem.' International journal of control 15.5: 961-979. [25] Feng, Z. P. and Zhu J. (2007). 'Design of LQI Control Systems with Stable Inner Loops.' Available at: http://www.researchgate.net/publication/265706415 [26] Piyapong Y. (2000). 'Hamiltonian Matrices and the Algebraic Riccati Equation' Available at: http://www2.mpimagdeburg.mpg.de/mpcsc/mitarbeiter/saak/lehre/Matrixgleichungen/pyuantong_09WS.pdf [27] Hough, S. E.(2004). Finding Fault in California: An Earthquake Tourist's Guide. Mountain Press Publishing. [28] 中央氣象局地震報告第88043號。 [29] 交通部中央氣象局新聞稿,中象新89字第05號(1999)。 [30] 中央氣象局地震報告第105006號。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50857 | - |
| dc.description.abstract | 地震工程研究中,常使用地震模擬振動台之實驗方法,以觀察安裝於振動台上待測試體之受震反應。地震模擬振動台藉由致動器推動剛性測試平台以重現地震歷時,然而因為振動台之衝程限制,常無法重現部分高樓層樓版反應或長週期地震歷時。本研究在不改變既有振動台配置之前提下,以一組被動轉移裝置,配合線性及非線性控制器之分析與設計,得以在轉移裝置上獲得較原振動台更大之總衝程,重現高樓層之樓版反應歷時。
線性控制器包括傳統的比例-積分-微分控制器、開迴路前饋控制器以及閉迴路線性二次高斯控制器,此外由於使用摩擦單擺系統做為被動轉移裝置,其阻尼比隨系統狀態之不同而變化,造成線性控制器之性能表現不佳,因此須考慮阻尼比對控制器穩定性及系統表現之影響。本研究利用力平衡及庫倫摩擦理論進行運動方程式的推導,得到非線性模型,再以該模型進行非線性控制器的設計,包含適應性前饋控制、增益補償法及ξ-scheduling方法。 本研究以一高雄市34層樓的鋼構造建築為例,使用發展之實驗技術重現該建築頂樓樓板之受震反應歷時,並使用正弦週期掃頻評估安裝控制器之效果,實驗結果可應用於不同尺度之地震模擬振動台,做為重現高樓層樓版反應或長週期地震歷時方法之重要參考。 | zh_TW |
| dc.description.abstract | Shaking table, known as earthquake simulators, is used to reproduce record of earthquakes. An original shaking table system is made up of an actuator, a servo valve, a controller, and rigid platform. By exciting an actuator, the response of specimens, which is mounted on the rigid platform, can be investigated in real time. However, causing to the stroke limit of the actuator, it’s difficult to reproduce floor responses of high-rise buildings which are subjected to earthquakes or long-period time histories. In order not to change the configuration of the shaking table, a passive transfer system with linear and nonlinear control strategy is used to enlarge the stroke limit of the shaking table, then the floor responses mentioned before could be reproduced.
The linear controllers including feedforward control, PID control and LQG control are used to verify the feasibility and controllability of the passive transfer system. However, the transfer system which is made up of friction pendulum system contains a nonlinear factor related to damping ratio, causing to the poor reproduction of time histories. To improve the performance of passive transfer system, the nonlinear controllers based on the motion equation of friction pendulum system are introduced, including adaptive feedforward control, magnitude matching method and ξ-scheduling method. These methods mentioned above are verified by reproducing both floor responses of high-rise buildings which are subjected to earthquakes and sweep sine history, and the analysis of experimental result could be referenced for designing passive transfer system for different scale of shaking table systems. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:02:37Z (GMT). No. of bitstreams: 1 ntu-105-R03521207-1.pdf: 33434641 bytes, checksum: 8786fd49600893bbd4cc883ac073d899 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 …………………………………………………………………………………………………i
摘要 …………………………………………………………………………………………………ii ABSTRACT ……………………………………………………………………………iii 第 1 章 緒論 ……………………………………………………………………………1 1.1 前言 …………………………………………………………………………………………………1 1.2 研究動機 ……………………………………………………………………………2 1.3 研究方法 ……………………………………………………………………………2 1.4 文獻回顧 ……………………………………………………………………………3 1.5 文章架構 ……………………………………………………………………………5 第 2 章 被動轉移裝置動力特性 …………………………………6 2.1 被動轉移裝置原理 ………………………………………………………6 2.1.1 轉移函數 ……………………………………………………………………………6 2.1.2 狀態空間 ……………………………………………………………………………7 2.1.3 波德圖 ……………………………………………………………………………9 2.2 轉移裝置與振動台實驗系統 …………………………………11 2.2.1 地震模擬振動台 ………………………………………………………11 2.2.2 運用轉移裝置搭配地震模擬振動台 ……………12 2.3 轉移裝置設計建議 ………………………………………………………12 2.3.1 振動台作動頻率與放大倍率之關係 ……………12 2.3.2 轉移裝置衝程設計建議 ………………………………………………………13 2.4 轉移裝置實作 ……………………………………………………………………………15 2.5 轉移裝置理論模型 ………………………………………………………16 第 3 章 系統識別與控制器設計方法 …………………………………18 3.1 系統識別原理 ……………………………………………………………………………18 3.1.1 單輸入-單輸出系統之頻譜關係 …………………………………19 3.1.2 白雜訊 ……………………………………………………………………………20 3.1.3 線性最小平方法 ………………………………………………………21 3.1.4 Coefficient Constraint方法 …………………………………24 3.2 控制理論簡述 ……………………………………………………………………………25 3.2.1 正則形式 ……………………………………………………………………………26 3.2.2 開迴路系統 ……………………………………………………………………………27 3.2.3 閉迴路系統 ……………………………………………………………………………27 3.3 前饋控制器 ……………………………………………………………………………28 3.3.1 逆模型 ……………………………………………………………………………28 3.3.2 適應性控制 ……………………………………………………………………………29 3.4 回饋控制器 ……………………………………………………………………………31 3.4.1 比例-積分-微分控制器 ………………………………………………………31 3.4.2 線性二次高斯控制器 ………………………………………………………32 第 4 章 實驗規劃 ……………………………………………………………………………39 4.1 實驗架設 ……………………………………………………………………………39 4.1.1 振動台系統介紹 ………………………………………………………39 4.1.2 量測儀器與整體控制迴路 …………………………………40 4.2 線性控制器設計 ………………………………………………………40 4.2.1 系統識別結果 ………………………………………………………41 4.2.2 前饋控制器 ……………………………………………………………………………43 4.2.3 比例-積分-微分控制器 ………………………………………………………43 4.2.4 線性二次高斯控制器 ………………………………………………………44 4.3 非線性控制器設計 ………………………………………………………46 4.3.1 理論模型參數 ………………………………………………………46 4.3.2 適應性前饋控制 ………………………………………………………48 4.3.3 增益補償法 ……………………………………………………………………………49 4.3.4 ξ-scheduling method …………………………………50 第 5 章 數值模擬與分析 ………………………………………………………51 5.1 實驗歷時 ……………………………………………………………………………51 5.1.1 正弦週期掃頻 ………………………………………………………51 5.1.2 高樓層樓版反應 ………………………………………………………51 5.2 評估指標 ……………………………………………………………………………53 5.3 轉移函數模型與線性控制器模擬結果 ……………54 5.3.1 前饋控制器 ……………………………………………………………………………54 5.3.2 比例-積分-微分控制器 ………………………………………………………55 5.3.3 線性二次高斯控制器 ………………………………………………………55 5.4 理論模型與非線性控制器模擬結果 …………………………………56 5.4.1 前饋控制器 ……………………………………………………………………………56 5.4.2 增益補償法 ……………………………………………………………………………57 5.4.3 ξ-scheduling method …………………………………58 5.4.4 正弦週期掃頻模擬結果 ………………………………………………………59 5.4.5 長週期高樓層樓板反應歷時模擬結果 ……………60 第 6 章 實驗結果與分析 ………………………………………………………61 6.1 線性控制器實驗結果 ………………………………………………………61 6.2 非線性控制器實驗結果 ………………………………………………………62 6.2.1 正弦週期掃頻 ………………………………………………………62 6.2.2 長週期樓版反應歷時重現 …………………………………63 第 7 章 結論與建議 ………………………………………………………65 參考文獻 …………………………………………………………………………………………………68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 線性控制器 | zh_TW |
| dc.subject | 地震模擬振動台 | zh_TW |
| dc.subject | 被動轉移裝置 | zh_TW |
| dc.subject | 高樓層建築 | zh_TW |
| dc.subject | 非線性控制器 | zh_TW |
| dc.subject | 阻尼比 | zh_TW |
| dc.subject | 地震模擬振動台 | zh_TW |
| dc.subject | 被動轉移裝置 | zh_TW |
| dc.subject | 高樓層建築 | zh_TW |
| dc.subject | 線性控制器 | zh_TW |
| dc.subject | 非線性控制器 | zh_TW |
| dc.subject | 阻尼比 | zh_TW |
| dc.subject | damping ratio | en |
| dc.subject | nonlinear control | en |
| dc.subject | passive transfer system | en |
| dc.subject | shaking table | en |
| dc.subject | damping ratio | en |
| dc.subject | nonlinear control | en |
| dc.subject | linear control | en |
| dc.subject | high-rise building | en |
| dc.subject | shaking table | en |
| dc.subject | passive transfer system | en |
| dc.subject | high-rise building | en |
| dc.subject | linear control | en |
| dc.title | 以系統控制方法重現高樓層樓版受震反應歷時之研究 | zh_TW |
| dc.title | System Control Strategy on Floor Response Reproduction of High-rise Buildings Subjected to Earthquakes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張家銘 | |
| dc.subject.keyword | 地震模擬振動台,被動轉移裝置,高樓層建築,線性控制器,非線性控制器,阻尼比, | zh_TW |
| dc.subject.keyword | shaking table,passive transfer system,high-rise building,linear control,nonlinear control,damping ratio, | en |
| dc.relation.page | 141 | |
| dc.identifier.doi | 10.6342/NTU201600755 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 32.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
