Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50852
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔
dc.contributor.authorWei-Ta Leeen
dc.contributor.author李威達zh_TW
dc.date.accessioned2021-06-15T13:02:18Z-
dc.date.available2018-10-17
dc.date.copyright2016-10-17
dc.date.issued2016
dc.date.submitted2016-07-08
dc.identifier.citation[1] Novoselov, K. S. et al. Science, 306, 666–669(2004).
[2] D. Pacilé, J. C. Meyer, Ç. Ö. Girit and A. Zettl, Appl. Phys. Lett. 92,
133107 (2008).
[3] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz, Phys. Rev.
Lett. 105, 136805.
[4] Novoselov, K. S. et al. Proc. Natl Acad. Sci. USA, 102, 10451–10453(2005).
[5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti1 and A. Kis, Nat.
Nanotechnol. 6, 147-150(2011).
[6] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman
& Michael S. Strano, Nature Nanotechnology 7,699–712(2012).
[7] Xu, M., Lian, T., Shi, M. & Chen, H. Chem.Rev, 113, 3766–3798(2013).
[8] Butler, S. Z. et al. ACS Nano, 7, 2898–2926(2013).
[9] Enyashin, A. N.; Yadgarov, L.; Houben, L.; Popov, I.; Weidenbach, M.; Tenne,
R.; Bar-Sadan, M.; Seifert, G. J. Phys. Chem. C, 115, 24586–24591(2011).
[10] Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. Nano Lett,11, 5111–5116(2011).
[11] Wilson, J. A. & Yoffe, A. D. Adv. Phys. 18, 193–335 (1969).
[12] Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 105, 136805(2010).
[13] Dolui, K.; Pemmaraju, C. a10).
[15] Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C.Appl. Phys. Lett. 99, 102109(2011).
[16] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.;
Galli, G.; Wang, F. Nano Lett. 10, 1271–1275(2010).
[17] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 10, 1271–1275(2010).
[18] Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, P. Y. Hung, Nano Letters,14 (11), 6275-6280(2014).
[19] Mikai Chen, Sungjin Wi, Hongsuk Nam, Greg Priessnitz and Xiaogan Liang, J. Vac. Sci. Technol. B 32, 06FF02 (2014).
[20] Li, H.; Yin, Z. Y.; He, Q. Y.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Small, 8, 63–67(2012).
[21] Dattatray J. Late, Yi-Kai Huang, Bin Liu, Jagaran Acharya, Sharmila N.
Shirodkar, Jiajun Luo, ACS Nano, 2013, 7 (6), pp 4879–4891.
[22] Deblina Sarkar, Wei Liu, Xuejun Xie†, Aaron C. Anselmo, Samir Mitragotri,
and Kaustav Banerjee, ACS Nano, 2014, 8 (4), pp 3992–4003.
[23] Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee YJ, Park SG, Kwon JD, Kim .
Scientific Reports 5, Article number: 8052 (2015).
[24] E. Zhang, W. Wang, C. Zhang, Y. Jin, G. Zhu, Q. Sun, D. W. Zhang, P. Zhou, and F. Xiu. ACS Nano, 2015, 9 (1), pp 612–619.
[25] Wang J1, Zou X, Xiao X, Xu L, Wang C, Jiang C, Ho JC, Wang T, Li J, Liao L. Small. 2015 Jan 14;11(2):208-13.
[26] M. Chen, H. Nam, S. Wi, G. Priessnitz, I. M. Gunawan, and X. Liang*. ACS Nano, 2014, 8 (4), pp 4023–4032
[27] G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C.Nuckolls, P. Kim, and J. Hone . ACS Nano, 2013, 7 (9), pp 7931–7936
[28] R. R. Schaller, Spectrum, IEEE, 53 (1997)
[29] F. Schwierz, Nature Nanotechnology, Vol. 5, 487 (2010)
[30] Frank, D. J., Taur, Y. & Wong, H-S. P. IEEE Electron Dev. Lett. 19, 385–387(1998).
[31] Yan, R. H.; Ourmazd, A.; and Lee, K. F. IEEE Trans. Elect. Dev. 39, 1704-1710(1992)
[32] Yoon, Y.; Ganapathi, K.; Salahuddin, S, Nano Lett,11, 3768–3773(2011)
[33] Yoon, Y.; Ganapathi, K.; Salahuddin, S. Nano Lett. 11, 3768–3773(2011).
[34] Leitao, L.; Bala Kumar, S.; Yijian, O.; Guo, J. IEEE Trans. Electron Devices, 58, 3042–3047(2011).
[35] Liu, L.; Lu, Y.; Guo, J. IEEE Trans. Electron Devices, 60, 4133–4139(2013).
[36] Jia Dan Lin, Cheng Han, Fei Wang, Rui Wang, Du Xiang, Shiqiao Qin,
ACS Nano, 2014, 8 (5), pp 5323–5329
[37] Kevin Chen, Daisuke Kiriya, Mark Hettick, Mahmut Tosun, APL Mater. 2,
092504 (2014)
[38] Peida Zhao, Daisuke Kiriya, Angelica Azcatl, Chenxi Zhang, Mahmut Tosun,
ACS Nano, 2014, 8 (10), pp 10808–10814
[39] Hui Fang, Mahmut Tosun, Gyungseon Seol, Ting Chia Chang, Kuniharu Takei, Jing Guo, and Ali Javey, Nano Lett., 2013, 13 (5), pp 1991–1995
[40] Daisuke Kiriya, Mahmut Tosun, Peida Zhao, Jeong Seuk Kang, and Ali Javey, J.
Am. Chem. Soc., 2014, 136 (22), pp 7853–7856
[41] Dong-Ho Kang, Myung-Soo Kim,Jaewoo Shim, Jeaho Jeon, Hyung-Youl
Park1, Woo-Shik Jung, Hyun-Yong Yu4,Chang-Hyun Pang, Sungjoo Lee andJin- Hong Park, Advanced Functional Materials, vol 25, issue 27, pages 4219-4227, July 15, 2015
[42] Alexey Tarasov, Siyuan Zhang, Meng-Yen Tsai, Philip M. Campbell, Samuel
Graham, Stephen Barlow, Seth R. Marder and Eric M. Vogel, Adv Mater.
2015,vol 27 issue 7, pp 1175-1181
[43] Matin Amani, Der-Hsien Lien,Daisuke Kiriya, Science 27 Nov 2015, Vol. 350, Issue 6264, pp. 1065-1068
[44] Mikai Chen, Sungjin Wi, Hongsuk Nam, Greg Priessnitz and Xiaogan Liang, J.
Vac. Sci. Technol. B 32, 06FF02 (2014)
[45]Mikai Chen, Hongsuk Nam, Sungjin Wi, Lian Ji, Xin Ren, Lifeng Bian,Shulong
Lu and Xiaogan Liang, Appl. Phys. Lett. 103, 142110 (2013)
[46] Wi S, Kim H, Chen M, Nam H, Guo LJ, Meyhofer E, Liang X. ACS Nano, 2014, 8 (5), pp 5270–5281
[47] Late, D. J.; Liu, B.; Matte, H. S. S. R.; Rao, C. N. R.; Dravid, V. P. Advanced Functional Materials, 22 (9), 1894-1905(2012).
[48] Russell, J. P. Appl. Phys. Lett. 6, 223(1965).
[49] Fang Hui, Chuang Steven, Chang Ting Chia, Javey Ali, Nano Lett, 12, 3788−3792(2012)
[50] Q Zhang, C.C.R Yap , B K,Tay , T, H ,T, Edwin, Adv. Funct. Mater, 22, 1385–1390(2012)
[51] D. Liu, Y. Guo, L. Fang, J. Robertson, Appl. Phys. Lett,103, 183113 (2013).
[52] Nan H, Wang Z ,Wang W, Liang Z, Lu Y,ACS Nano, 8(6) ,5738–5745(2014)
[53] Tongay S, Zhou J, Liu J, Kang J S, S T,Nano Lett,13, 2831−2836(2013)
[54] Dattatray J. Late, Bin Liu, H. S. S. Ramakrishna Matte, Vinayak P. Dravid, and C. N. R. Rao. ACS Nano, 2012, 6 (6), pp 5635–5641
[55] Simone Bertolazzi, Daria Krasnozhon, and Andras Kis. ACS Nano, 2013, 7 (4), pp 3246–3252
[56] Wang F, Stepanov P, Gray M, Lau CN. Nanotechnology. 2015 Mar 13;26(10):105709.
[57] Naveen Kaushik, Ankur Nipane, Firdous Basheer, Sudipta Dubey, Sameer Grover, Mandar M. Deshmukh and Saurabh Lodha, Appl. Phys. Lett. 105, 113505 (2014)
[58] Das S, Chen HY, Penumatcha AV, Appenzeller J. Nano Lett. 2013, 13, 100-105
[59] Woanseo Park et al 2013 Nanotechnology 24 095202
[60] M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, andN. S. Saricftci, Chemical Monthly, 140(7), 735 (2009).
[61] Na, J; Joo, M. K.; Shin, M. Nanoscale, 6, 433(2014).
[62] Jena, D.; Kona, A. Phys. Rev. Lett. 98, 136805(2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50852-
dc.description.abstract本論文使用機械剝離法分離出擁有奈米級厚度的二硫化鉬並製作出薄膜電晶體,利用光學顯微鏡及原子力顯微鏡的搭配篩選出較佳厚度範圍的二硫化鉬,並利用低功函數金屬鉻當作金屬電極來達成歐姆接觸。其電晶體最好的電流開關比可以高達8個數量級,最好的場效電子遷移率可以達到約31 cm2/V-sec。
接著使用氣體電漿摻雜二硫化鉬,藉由改變其二硫化鉬的費米能階對其進行材料改質,利用離子反應蝕刻機,三氟甲烷氣體電漿對二硫化鉬表面進行改質,成功進行p型電洞摻雜並使其費米能階往價電帶下降0.7~0.8 eV,從電性圖中,在20分鐘後的摻雜下,其截止電壓往正電壓位移7.9 eV,電洞摻雜濃度為5.7×1011 cm-2,除此之外,使用電漿輔助化學沉積系統中的磷化氫電漿進行n型電子摻雜,從電性圖中,在15分鐘後的摻雜下,其截止電壓往負電壓位移2.1 eV,電子摻雜濃度為1.5×1011 cm-2,然而,在真空環境的材料分析下,由於二硫化鉬和含磷粒子間微弱的作用力,含磷粒子無法吸附在二硫化鉬表面上。
我們發現在空氣中二硫化鉬表面會物理吸附環境中的水氣和氧分子,造成電洞摻雜的效應並且產生遲滯現象,最後透過氧化鋁保護層去隔絕元件和外在環境中的粒子來減少遲滯效應的產生。
zh_TW
dc.description.abstractIn this thesis, the mechanically exfoliated 2D material MoS2 nanosheet was successfully used to fabricate thin film transistor. Using optical microscopy and atomic force microscopy, the MoS2 flakes with appropriate thickness can be chosen. Ohmic contact of MoS2 TFT can be achieved by low work function metal Chromium. The highest on/off current ratio of MoS2 TFT was up to 8 order of magnitude and the mobility of 31 cm2/V-sec was achieved.
The gas plasma treatment was used to dope the 2D material MoS2. It modified the material by tuning its Fermi-level. CHF3 plasma was used to treat MoS2 surface by RIE. It showed p-doping effect and the Fermi level shifted 0.7~0.8 eV toward the valence band. In I-V characteristics, the threshold voltage also showed p-doping effect and shifted 7.9 V to higher positive voltage after 20 minutes plasma treatment. The induced carrier charge density was 5.7×1011 cm-2. In addition, PH3 plasma was used by PECVD. In I-V characteristics, the threshold voltage showed n-doping effect and shifted 2.1 V to more negative voltage after 15 minutes plasma treatment. The induced carrier charge density was 1.5×1011 cm-2. However, the P-related dopants were desorbed under high vacuum material analysis because of their weak interactions between dopants and MoS2.
Besides, it was found that the oxygen and water molecules were easily adsorbed at the MoS2 surface in air, which would lead to p-doping effect and hysteresis in devices. Finally, Al2O3 passivation layer was set to isolate MoS2 surface from ambient air to make a hysteresis free device.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:02:18Z (GMT). No. of bitstreams: 1
ntu-105-R03943055-1.pdf: 4219605 bytes, checksum: 8cc36c56d5b04484848bfea67ded52e6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents中文口試委員審定書……………………………………………………………….…i
誌謝……………………………………………………………………………………ii
摘要…………………………………………………………………………………...iii
ABSTRACT………………………………………………………………………….iv
CONTENTS………………………………………………………………………….vi
LIST OF FIGURES………………………………………………………………….ix
LIST OF TABLES……………………………………………………………….…xiii
Chapter 1 Introduction……………...……………………………………………….1
1.1 Overview of Molybdenum Dulfide………………………………….……...1
1.2 Advantages of MoS2 FETs………………………………………………….7
1.3 Motivation………………………………………………………….…..…..10
Chapter 2 Experiments……………...……………………………………………...11
2.1 Plasma Treatment System……………………………………………...….11
2.1.1 PECVD……………….……...………………...……………….11
2.1.2 Reactive ion etching (RIE)…………………………....………..16
2.2 Measurement Techniques…………………………………………………17
2.2.1 Atomic Force Microscopy(AFM)……………………………… 17
2.2.2 Raman Spectroscopy……………………………………………17
2.2.3 Photoluminescence(PL)………………………………………...18
2.2.4 Ultraviolet Photoelectron Spectroscopy (UPS)……...................18
2.2.5 X-ray Photoelectron Spectroscopy (XPS)...................................19
2.2.7 Current – Voltage Characteristics……………………..………...20
Chapter 3 Material Analysis for MoS2……………...……...………………………21
3.1 Substrate Preparation……………………………………………………..21
3.2 Preparation of Exfoliated MoS2…………………………………………...23
3.3 Characterization of MoS2 Film Thickness……………………….……….23
3.3.1 Optical Microscopy………..…………..………………………..24
3.3.2 Atomic Force Microscopy…….……………...………………...25
3.4 Optical and Vibrational Properties of MoS2…………………….………..27
3.4.1 Raman Spectroscopy……....……………………………………27
3.5.2 Photoluminescence……..………..……………………………..29
3.5 X-ray Photoelectron Spectroscopy (XPS)…...……………………………32
3.5.1 Stability of MoS2 in Air…...……………………………………33
3.6 Ultrabiolet Photoelectron Spectroscopy (UPS)….………………….……36
Chapter 4 MoS2 Thin Film Transistors…………………………………………….39
4.1 Back-gated TFTs of MoS2……………………....………………………….39
4.1.1 Device Process Flow……………….………..……..…………..39
4.1.2 Device Performance………………..………………………………….42
4.2 Plasma Treatment on MoS2………………………………………..………46
4.3 RIE plasma treatment…………………....……………………...………...46
4.3.1 Device Performance..……………….………..……..…………..47
4.3.2 Material Analysis…..……………….………..……..…………..49
4.4 Improved RIE plasma treatment………………………...…………...…...54
4.4.1 Device Performance..……………….………..……..…………..55
4.4.2 Material Analysis…..……………….………..……..…………..57
4.5 PECVD PH3 plasma treatment………………..………………...………...61
4.5.1 Device Performance and its Material Analysis……..…………..61
4.6 Humidity effect on MoS2 TFTs……..……………….…………………….64
4.7 ALD Al2O3 passivation on MoS2 TFT…………………………...………...66
4.7.1 Device Performance………………………….……..…………..66
4.7.2 Hysteresis in Back-gated MoS2 TFTs….……..………………..68
Chapter 5 Conclusions………………………………………………………………70
References...................................................................................................................72
dc.language.isoen
dc.subject電子/電洞摻雜效應zh_TW
dc.subject二硫化鉬薄膜電晶體zh_TW
dc.subject氣體電漿摻雜zh_TW
dc.subject氧化鋁zh_TW
dc.subject遲滯效應zh_TW
dc.subject二硫化鉬薄膜電晶體zh_TW
dc.subject氣體電漿摻雜zh_TW
dc.subject電子/電洞摻雜效應zh_TW
dc.subject氧化鋁zh_TW
dc.subject遲滯效應zh_TW
dc.subjectaluminum oxide (Al2O3)en
dc.subjectmolybdenum disulfide (MoS2) thin film transistoren
dc.subjectgas plasma treatmenten
dc.subjectn- doping effect / p-doping effecten
dc.subjectaluminum oxide (Al2O3)en
dc.subjecthysteresis effecten
dc.subjectgas plasma treatmenten
dc.subjectn- doping effect / p-doping effecten
dc.subjectmolybdenum disulfide (MoS2) thin film transistoren
dc.subjecthysteresis effecten
dc.title二維材料電漿摻雜及其薄膜電晶體應用zh_TW
dc.titlePlasma Doping to 2D Materials and its Application in Thin Film Transistoren
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林時彥,劉致為,林浩雄
dc.subject.keyword二硫化鉬薄膜電晶體,氣體電漿摻雜,電子/電洞摻雜效應,氧化鋁,遲滯效應,zh_TW
dc.subject.keywordmolybdenum disulfide (MoS2) thin film transistor,gas plasma treatment,n- doping effect / p-doping effect,aluminum oxide (Al2O3),hysteresis effect,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201600748
dc.rights.note有償授權
dc.date.accepted2016-07-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved