請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50852完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李嗣涔 | |
| dc.contributor.author | Wei-Ta Lee | en |
| dc.contributor.author | 李威達 | zh_TW |
| dc.date.accessioned | 2021-06-15T13:02:18Z | - |
| dc.date.available | 2018-10-17 | |
| dc.date.copyright | 2016-10-17 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-08 | |
| dc.identifier.citation | [1] Novoselov, K. S. et al. Science, 306, 666–669(2004).
[2] D. Pacilé, J. C. Meyer, Ç. Ö. Girit and A. Zettl, Appl. Phys. Lett. 92, 133107 (2008). [3] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz, Phys. Rev. Lett. 105, 136805. [4] Novoselov, K. S. et al. Proc. Natl Acad. Sci. USA, 102, 10451–10453(2005). [5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti1 and A. Kis, Nat. Nanotechnol. 6, 147-150(2011). [6] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N. Coleman & Michael S. Strano, Nature Nanotechnology 7,699–712(2012). [7] Xu, M., Lian, T., Shi, M. & Chen, H. Chem.Rev, 113, 3766–3798(2013). [8] Butler, S. Z. et al. ACS Nano, 7, 2898–2926(2013). [9] Enyashin, A. N.; Yadgarov, L.; Houben, L.; Popov, I.; Weidenbach, M.; Tenne, R.; Bar-Sadan, M.; Seifert, G. J. Phys. Chem. C, 115, 24586–24591(2011). [10] Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. Nano Lett,11, 5111–5116(2011). [11] Wilson, J. A. & Yoffe, A. D. Adv. Phys. 18, 193–335 (1969). [12] Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 105, 136805(2010). [13] Dolui, K.; Pemmaraju, C. a10). [15] Korn, T.; Heydrich, S.; Hirmer, M.; Schmutzler, J.; Schüller, C.Appl. Phys. Lett. 99, 102109(2011). [16] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 10, 1271–1275(2010). [17] Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 10, 1271–1275(2010). [18] Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, P. Y. Hung, Nano Letters,14 (11), 6275-6280(2014). [19] Mikai Chen, Sungjin Wi, Hongsuk Nam, Greg Priessnitz and Xiaogan Liang, J. Vac. Sci. Technol. B 32, 06FF02 (2014). [20] Li, H.; Yin, Z. Y.; He, Q. Y.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Small, 8, 63–67(2012). [21] Dattatray J. Late, Yi-Kai Huang, Bin Liu, Jagaran Acharya, Sharmila N. Shirodkar, Jiajun Luo, ACS Nano, 2013, 7 (6), pp 4879–4891. [22] Deblina Sarkar, Wei Liu, Xuejun Xie†, Aaron C. Anselmo, Samir Mitragotri, and Kaustav Banerjee, ACS Nano, 2014, 8 (4), pp 3992–4003. [23] Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee YJ, Park SG, Kwon JD, Kim . Scientific Reports 5, Article number: 8052 (2015). [24] E. Zhang, W. Wang, C. Zhang, Y. Jin, G. Zhu, Q. Sun, D. W. Zhang, P. Zhou, and F. Xiu. ACS Nano, 2015, 9 (1), pp 612–619. [25] Wang J1, Zou X, Xiao X, Xu L, Wang C, Jiang C, Ho JC, Wang T, Li J, Liao L. Small. 2015 Jan 14;11(2):208-13. [26] M. Chen, H. Nam, S. Wi, G. Priessnitz, I. M. Gunawan, and X. Liang*. ACS Nano, 2014, 8 (4), pp 4023–4032 [27] G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M. S. Choi, D.-Y. Lee, C. Lee, W. J. Yoo, K. Watanabe, T. Taniguchi, C.Nuckolls, P. Kim, and J. Hone . ACS Nano, 2013, 7 (9), pp 7931–7936 [28] R. R. Schaller, Spectrum, IEEE, 53 (1997) [29] F. Schwierz, Nature Nanotechnology, Vol. 5, 487 (2010) [30] Frank, D. J., Taur, Y. & Wong, H-S. P. IEEE Electron Dev. Lett. 19, 385–387(1998). [31] Yan, R. H.; Ourmazd, A.; and Lee, K. F. IEEE Trans. Elect. Dev. 39, 1704-1710(1992) [32] Yoon, Y.; Ganapathi, K.; Salahuddin, S, Nano Lett,11, 3768–3773(2011) [33] Yoon, Y.; Ganapathi, K.; Salahuddin, S. Nano Lett. 11, 3768–3773(2011). [34] Leitao, L.; Bala Kumar, S.; Yijian, O.; Guo, J. IEEE Trans. Electron Devices, 58, 3042–3047(2011). [35] Liu, L.; Lu, Y.; Guo, J. IEEE Trans. Electron Devices, 60, 4133–4139(2013). [36] Jia Dan Lin, Cheng Han, Fei Wang, Rui Wang, Du Xiang, Shiqiao Qin, ACS Nano, 2014, 8 (5), pp 5323–5329 [37] Kevin Chen, Daisuke Kiriya, Mark Hettick, Mahmut Tosun, APL Mater. 2, 092504 (2014) [38] Peida Zhao, Daisuke Kiriya, Angelica Azcatl, Chenxi Zhang, Mahmut Tosun, ACS Nano, 2014, 8 (10), pp 10808–10814 [39] Hui Fang, Mahmut Tosun, Gyungseon Seol, Ting Chia Chang, Kuniharu Takei, Jing Guo, and Ali Javey, Nano Lett., 2013, 13 (5), pp 1991–1995 [40] Daisuke Kiriya, Mahmut Tosun, Peida Zhao, Jeong Seuk Kang, and Ali Javey, J. Am. Chem. Soc., 2014, 136 (22), pp 7853–7856 [41] Dong-Ho Kang, Myung-Soo Kim,Jaewoo Shim, Jeaho Jeon, Hyung-Youl Park1, Woo-Shik Jung, Hyun-Yong Yu4,Chang-Hyun Pang, Sungjoo Lee andJin- Hong Park, Advanced Functional Materials, vol 25, issue 27, pages 4219-4227, July 15, 2015 [42] Alexey Tarasov, Siyuan Zhang, Meng-Yen Tsai, Philip M. Campbell, Samuel Graham, Stephen Barlow, Seth R. Marder and Eric M. Vogel, Adv Mater. 2015,vol 27 issue 7, pp 1175-1181 [43] Matin Amani, Der-Hsien Lien,Daisuke Kiriya, Science 27 Nov 2015, Vol. 350, Issue 6264, pp. 1065-1068 [44] Mikai Chen, Sungjin Wi, Hongsuk Nam, Greg Priessnitz and Xiaogan Liang, J. Vac. Sci. Technol. B 32, 06FF02 (2014) [45]Mikai Chen, Hongsuk Nam, Sungjin Wi, Lian Ji, Xin Ren, Lifeng Bian,Shulong Lu and Xiaogan Liang, Appl. Phys. Lett. 103, 142110 (2013) [46] Wi S, Kim H, Chen M, Nam H, Guo LJ, Meyhofer E, Liang X. ACS Nano, 2014, 8 (5), pp 5270–5281 [47] Late, D. J.; Liu, B.; Matte, H. S. S. R.; Rao, C. N. R.; Dravid, V. P. Advanced Functional Materials, 22 (9), 1894-1905(2012). [48] Russell, J. P. Appl. Phys. Lett. 6, 223(1965). [49] Fang Hui, Chuang Steven, Chang Ting Chia, Javey Ali, Nano Lett, 12, 3788−3792(2012) [50] Q Zhang, C.C.R Yap , B K,Tay , T, H ,T, Edwin, Adv. Funct. Mater, 22, 1385–1390(2012) [51] D. Liu, Y. Guo, L. Fang, J. Robertson, Appl. Phys. Lett,103, 183113 (2013). [52] Nan H, Wang Z ,Wang W, Liang Z, Lu Y,ACS Nano, 8(6) ,5738–5745(2014) [53] Tongay S, Zhou J, Liu J, Kang J S, S T,Nano Lett,13, 2831−2836(2013) [54] Dattatray J. Late, Bin Liu, H. S. S. Ramakrishna Matte, Vinayak P. Dravid, and C. N. R. Rao. ACS Nano, 2012, 6 (6), pp 5635–5641 [55] Simone Bertolazzi, Daria Krasnozhon, and Andras Kis. ACS Nano, 2013, 7 (4), pp 3246–3252 [56] Wang F, Stepanov P, Gray M, Lau CN. Nanotechnology. 2015 Mar 13;26(10):105709. [57] Naveen Kaushik, Ankur Nipane, Firdous Basheer, Sudipta Dubey, Sameer Grover, Mandar M. Deshmukh and Saurabh Lodha, Appl. Phys. Lett. 105, 113505 (2014) [58] Das S, Chen HY, Penumatcha AV, Appenzeller J. Nano Lett. 2013, 13, 100-105 [59] Woanseo Park et al 2013 Nanotechnology 24 095202 [60] M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, andN. S. Saricftci, Chemical Monthly, 140(7), 735 (2009). [61] Na, J; Joo, M. K.; Shin, M. Nanoscale, 6, 433(2014). [62] Jena, D.; Kona, A. Phys. Rev. Lett. 98, 136805(2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50852 | - |
| dc.description.abstract | 本論文使用機械剝離法分離出擁有奈米級厚度的二硫化鉬並製作出薄膜電晶體,利用光學顯微鏡及原子力顯微鏡的搭配篩選出較佳厚度範圍的二硫化鉬,並利用低功函數金屬鉻當作金屬電極來達成歐姆接觸。其電晶體最好的電流開關比可以高達8個數量級,最好的場效電子遷移率可以達到約31 cm2/V-sec。
接著使用氣體電漿摻雜二硫化鉬,藉由改變其二硫化鉬的費米能階對其進行材料改質,利用離子反應蝕刻機,三氟甲烷氣體電漿對二硫化鉬表面進行改質,成功進行p型電洞摻雜並使其費米能階往價電帶下降0.7~0.8 eV,從電性圖中,在20分鐘後的摻雜下,其截止電壓往正電壓位移7.9 eV,電洞摻雜濃度為5.7×1011 cm-2,除此之外,使用電漿輔助化學沉積系統中的磷化氫電漿進行n型電子摻雜,從電性圖中,在15分鐘後的摻雜下,其截止電壓往負電壓位移2.1 eV,電子摻雜濃度為1.5×1011 cm-2,然而,在真空環境的材料分析下,由於二硫化鉬和含磷粒子間微弱的作用力,含磷粒子無法吸附在二硫化鉬表面上。 我們發現在空氣中二硫化鉬表面會物理吸附環境中的水氣和氧分子,造成電洞摻雜的效應並且產生遲滯現象,最後透過氧化鋁保護層去隔絕元件和外在環境中的粒子來減少遲滯效應的產生。 | zh_TW |
| dc.description.abstract | In this thesis, the mechanically exfoliated 2D material MoS2 nanosheet was successfully used to fabricate thin film transistor. Using optical microscopy and atomic force microscopy, the MoS2 flakes with appropriate thickness can be chosen. Ohmic contact of MoS2 TFT can be achieved by low work function metal Chromium. The highest on/off current ratio of MoS2 TFT was up to 8 order of magnitude and the mobility of 31 cm2/V-sec was achieved.
The gas plasma treatment was used to dope the 2D material MoS2. It modified the material by tuning its Fermi-level. CHF3 plasma was used to treat MoS2 surface by RIE. It showed p-doping effect and the Fermi level shifted 0.7~0.8 eV toward the valence band. In I-V characteristics, the threshold voltage also showed p-doping effect and shifted 7.9 V to higher positive voltage after 20 minutes plasma treatment. The induced carrier charge density was 5.7×1011 cm-2. In addition, PH3 plasma was used by PECVD. In I-V characteristics, the threshold voltage showed n-doping effect and shifted 2.1 V to more negative voltage after 15 minutes plasma treatment. The induced carrier charge density was 1.5×1011 cm-2. However, the P-related dopants were desorbed under high vacuum material analysis because of their weak interactions between dopants and MoS2. Besides, it was found that the oxygen and water molecules were easily adsorbed at the MoS2 surface in air, which would lead to p-doping effect and hysteresis in devices. Finally, Al2O3 passivation layer was set to isolate MoS2 surface from ambient air to make a hysteresis free device. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T13:02:18Z (GMT). No. of bitstreams: 1 ntu-105-R03943055-1.pdf: 4219605 bytes, checksum: 8cc36c56d5b04484848bfea67ded52e6 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 中文口試委員審定書……………………………………………………………….…i
誌謝……………………………………………………………………………………ii 摘要…………………………………………………………………………………...iii ABSTRACT………………………………………………………………………….iv CONTENTS………………………………………………………………………….vi LIST OF FIGURES………………………………………………………………….ix LIST OF TABLES……………………………………………………………….…xiii Chapter 1 Introduction……………...……………………………………………….1 1.1 Overview of Molybdenum Dulfide………………………………….……...1 1.2 Advantages of MoS2 FETs………………………………………………….7 1.3 Motivation………………………………………………………….…..…..10 Chapter 2 Experiments……………...……………………………………………...11 2.1 Plasma Treatment System……………………………………………...….11 2.1.1 PECVD……………….……...………………...……………….11 2.1.2 Reactive ion etching (RIE)…………………………....………..16 2.2 Measurement Techniques…………………………………………………17 2.2.1 Atomic Force Microscopy(AFM)……………………………… 17 2.2.2 Raman Spectroscopy……………………………………………17 2.2.3 Photoluminescence(PL)………………………………………...18 2.2.4 Ultraviolet Photoelectron Spectroscopy (UPS)……...................18 2.2.5 X-ray Photoelectron Spectroscopy (XPS)...................................19 2.2.7 Current – Voltage Characteristics……………………..………...20 Chapter 3 Material Analysis for MoS2……………...……...………………………21 3.1 Substrate Preparation……………………………………………………..21 3.2 Preparation of Exfoliated MoS2…………………………………………...23 3.3 Characterization of MoS2 Film Thickness……………………….……….23 3.3.1 Optical Microscopy………..…………..………………………..24 3.3.2 Atomic Force Microscopy…….……………...………………...25 3.4 Optical and Vibrational Properties of MoS2…………………….………..27 3.4.1 Raman Spectroscopy……....……………………………………27 3.5.2 Photoluminescence……..………..……………………………..29 3.5 X-ray Photoelectron Spectroscopy (XPS)…...……………………………32 3.5.1 Stability of MoS2 in Air…...……………………………………33 3.6 Ultrabiolet Photoelectron Spectroscopy (UPS)….………………….……36 Chapter 4 MoS2 Thin Film Transistors…………………………………………….39 4.1 Back-gated TFTs of MoS2……………………....………………………….39 4.1.1 Device Process Flow……………….………..……..…………..39 4.1.2 Device Performance………………..………………………………….42 4.2 Plasma Treatment on MoS2………………………………………..………46 4.3 RIE plasma treatment…………………....……………………...………...46 4.3.1 Device Performance..……………….………..……..…………..47 4.3.2 Material Analysis…..……………….………..……..…………..49 4.4 Improved RIE plasma treatment………………………...…………...…...54 4.4.1 Device Performance..……………….………..……..…………..55 4.4.2 Material Analysis…..……………….………..……..…………..57 4.5 PECVD PH3 plasma treatment………………..………………...………...61 4.5.1 Device Performance and its Material Analysis……..…………..61 4.6 Humidity effect on MoS2 TFTs……..……………….…………………….64 4.7 ALD Al2O3 passivation on MoS2 TFT…………………………...………...66 4.7.1 Device Performance………………………….……..…………..66 4.7.2 Hysteresis in Back-gated MoS2 TFTs….……..………………..68 Chapter 5 Conclusions………………………………………………………………70 References...................................................................................................................72 | |
| dc.language.iso | en | |
| dc.subject | 電子/電洞摻雜效應 | zh_TW |
| dc.subject | 二硫化鉬薄膜電晶體 | zh_TW |
| dc.subject | 氣體電漿摻雜 | zh_TW |
| dc.subject | 氧化鋁 | zh_TW |
| dc.subject | 遲滯效應 | zh_TW |
| dc.subject | 二硫化鉬薄膜電晶體 | zh_TW |
| dc.subject | 氣體電漿摻雜 | zh_TW |
| dc.subject | 電子/電洞摻雜效應 | zh_TW |
| dc.subject | 氧化鋁 | zh_TW |
| dc.subject | 遲滯效應 | zh_TW |
| dc.subject | aluminum oxide (Al2O3) | en |
| dc.subject | molybdenum disulfide (MoS2) thin film transistor | en |
| dc.subject | gas plasma treatment | en |
| dc.subject | n- doping effect / p-doping effect | en |
| dc.subject | aluminum oxide (Al2O3) | en |
| dc.subject | hysteresis effect | en |
| dc.subject | gas plasma treatment | en |
| dc.subject | n- doping effect / p-doping effect | en |
| dc.subject | molybdenum disulfide (MoS2) thin film transistor | en |
| dc.subject | hysteresis effect | en |
| dc.title | 二維材料電漿摻雜及其薄膜電晶體應用 | zh_TW |
| dc.title | Plasma Doping to 2D Materials and its Application in Thin Film Transistor | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林時彥,劉致為,林浩雄 | |
| dc.subject.keyword | 二硫化鉬薄膜電晶體,氣體電漿摻雜,電子/電洞摻雜效應,氧化鋁,遲滯效應, | zh_TW |
| dc.subject.keyword | molybdenum disulfide (MoS2) thin film transistor,gas plasma treatment,n- doping effect / p-doping effect,aluminum oxide (Al2O3),hysteresis effect, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201600748 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
