Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50828
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張堂賢
dc.contributor.authorWei Linen
dc.contributor.author林威zh_TW
dc.date.accessioned2021-06-15T13:00:48Z-
dc.date.available2026-12-31
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-11
dc.identifier.citation1. 張家榕、蔡玫亭(2011),「停車場預約機制的設計與模擬」。東華大學運籌管理研究所碩士班碩士論文。
2. 李天翔、包蒼龍(2010),「以影像辨識為基礎之停車場車位管理之研究」。大同大學資訊工程研究所碩士班碩士論文。
3. 呂孟學、吳健生(2000),「應用類神經網路於及時停車需求預測之研究」。國立中央大學土木工程研究所碩士班碩士論文。
4. 陳重光、邱裕鈞(2012),「雙占市場下路外停車場之動態預約訂價模式構建」。國立交通大學交通運輸研究所碩士班碩士論文。
5. 吳國群、石豐宇(2004),「以非合作賽局求解最佳公共停車場費率」。淡江大學運輸管理學系運輸科學碩士班碩士論文。
6. 李東華、徐守德、賴文泰(2005),「國內推動民間參與公共停車場實施經驗與改善對策之研究」。國立中山大學高階經營碩士學程碩士在職專班碩士論文。
7. 刘静, & 关伟. (2004). 交通流预测方法综述. 公路交通科技, 21(3), 82-85.
8. 交通部(2016),105年4月交通統計月報
9. 臺北市政府交通局(2016),105年4月交通統計月報
10. Ayala, D., Wolfson, O., Xu, B., DasGupta, B., & Lin, J. (2012, November). Pricing of parking for congestion reduction. In Proceedings of the 20th International Conference on Advances in Geographic Information Systems (pp. 43-51). ACM.
11. Albert, G., & Mahalel, D. (2006). Congestion tolls and parking fees: A comparison of the potential effect on travel behavior. Transport policy, 13(6), 496-502.
12. Bitran, G. R., & Mondschein, S. V. (1997). Periodic pricing of seasonal products in retailing. Management Science, 43(1), 64-79.
13. Bitran, G., & Caldentey, R. (2003). An overview of pricing models for revenue management. Manufacturing & Service Operations Management, 5(3), 203-229.
14. Caicedo, F., Blazquez, C., & Miranda, P. (2012). Prediction of parking space availability in real time. Expert Systems with Applications, 39(8), 7281-7290.
15. Davis, G. A., & Nihan, N. L. (1991). Nonparametric regression and short-term freeway traffic forecasting. Journal of Transportation Engineering, 117(2), 178-188.
16. Teodorović, D., & Lučić, P. (2006). Intelligent parking systems. European Journal of Operational Research, 175(3), 1666-1681.
17. Geng, Y., & Cassandras, C. G. (2012). A new “smart parking” system infrastructure and implementation. Procedia-Social and Behavioral Sciences, 54, 1278-1287.
18. Guadix, J., Onieva, L., Muñuzuri, J., & Cortés, P. (2011). An overview of revenue management in service industries: an application to car parks. The Service Industries Journal, 31(1), 91-105.
19. Hashimoto, S., Kanamori, R., Ito, T., & Chakraborty, S. (2012, December). Evaluation of Parking Reservation System with Auction Including Electricity Trading. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2012 IEEE/WIC/ACM International Conferences on (Vol. 3, pp. 389-393). IEEE.
20. Hensher, D. A., & King, J. (2001). Parking demand and responsiveness to supply, pricing and location in the Sydney central business district. Transportation Research Part A: Policy and Practice, 35(3), 177-196.
21. Idris, M. Y. I., Leng, Y. Y., Tamil, E. M., Noor, N. M., & Razak, Z. (2009). ??? park system: a review of smart parking system and its technology. Inf. Technol. J, 8(2), 101-113.
22. Kaur, R., & Singh, B. (2013). Design and Implementation of Car Parking System on FPGA. arXiv preprint arXiv:1307.3051.
23. Lee, S., & Fambro, D. (1999). Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transportation Research Record: Journal of the Transportation Research Board, (1678), 179-188.
24. Mahmud, S. A., Khan, G. M., Rahman, M., & Zafar, H. (2013). A Survey of Intelligent Car Parking System. Journal of applied research and technology, 11(5), 714-726.
25. McGill, J. I., & Van Ryzin, G. J. (1999). Revenue management: Research overview and prospects. Transportation science, 33(2), 233-256.
26. Stathopoulos, A., & Karlaftis, M. G. (2001). Spectral and cross-spectral analysis of urban traffic flows. In Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE (pp. 820-825). IEEE.
27. Smith, B. L., & Demetsky, M. J. (1997). Traffic flow forecasting: comparison of modeling approaches. Journal of transportation engineering, 123(4), 261-266.
28. Tang, V. W., Zheng, Y., & Cao, J. (2006, August). An intelligent car park management system based on wireless sensor networks. In Pervasive Computing and Applications, 2006 1st International Symposium on (pp. 65-70). IEEE.
29. Tan, M. C., Wong, S. C., Xu, J. M., Guan, Z. R., & Zhang, P. (2009). An aggregation approach to short-term traffic flow prediction. Intelligent Transportation Systems, IEEE Transactions on, 10(1), 60-69.
30. Tsamboulas, D. A. (2001). Parking fare thresholds: a policy tool. Transport Policy, 8(2), 115-124.
31. Vianna, M. M. B., da Silva Portugal, L., & Balassiano, R. (2004). Intelligent transportation systems and parking management: implementation potential in a Brazilian city. Cities, 21(2), 137-148.
32. Wang, H., & He, W. (2011, April). A reservation-based smart parking system. In Computer Communications Workshops (INFOCOM WKSHPS), 2011 IEEE Conference on (pp. 690-695). IEEE.
33. Williams, B. M., & Hoel, L. A. (2003). Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of transportation engineering, 129(6), 664-672.
34. Willson, R. W., & Shoup, D. C. (1990). Parking subsidies and travel choices: assessing the evidence. Transportation, 17(2), 141-157.
35. Wirtz, J., Kimes, S. E., Theng, J. H. P., & Patterson, P. (2003). Revenue management: Resolving potential customer conflicts. Journal of Revenue and Pricing Management, 2(3), 216-226.
36. Xie, Y., Zhang, Y., & Ye, Z. (2007). Short‐Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition. Computer‐Aided Civil and Infrastructure Engineering, 22(5), 326-334.
37. Yasdi, R. (1999). Prediction of road traffic using a neural network approach. Neural computing & applications, 8(2), 135-142.
38. Zhao, W., & Zheng, Y. S. (2000). Optimal dynamic pricing for perishable assets with nonhomogeneous demand. Management science, 46(3), 375-388.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50828-
dc.description.abstract由於經濟成長及政府長期以來以公路交通為導向之城鄉發展政策,近年來民眾為追求便利性而導致小客車之持有率逐年攀高,與之相應也產生了停車空位不足的問題,在人口密集之都市地區,此情況顯得更為嚴重。在面對交通工具的選擇時,價格的考量常常是影響選擇的主要因素之一,因此近年來為抑制小客車的數量成長,道路收費與停車場之費率調整為一種有效且直接的方式,而其中停車場費率調整執行難易門檻較低,因此更受重視。另一方面,現有之停車場費率採用先到先停,固定費率之形式,此一成不變的商業模式除了難以因應未來之彈性停車場管理,同時也限制了停車場業者的收益。
為解決上述問題,本研究希望結合收益管理之理念,透過了解尖離峰時段顧客數量的差異,訂定相應之合適價格。在尖峰時段空位稀少時調高停車費率,使停車場業者賺取價差,同時也透過高價抑制該時段之顧客數量;而在離峰時段空位供過於求時,透過降低價格吸引更多顧客前來,消除剩餘空位。考量到停車場業者要實行動態價格可能有執行上的困難,例如公告價格的方式等,本研究將以預約系統的形式落實動態費率。
本研究首先假設停車價格具有彈性,即消費者之多寡可以價格控制。研究內容包含未來顧客數量預測與動態定價模型兩個主要部分。在未來顧客數量預測方面,首先將資料進行前處理,濾除漏失值和異常資料,之後透過ARIMA模型和離散時間傅立葉轉換法預測未來顧客數量變化情形。在動態定價模型部分,為防止特殊情況發生時當日顧客數量變化情形與預測不符,本研究首先建立基於卡曼濾波法和k最近鄰法的需求更新模組。該模組將透過所蒐集之即時資料更新預測,之後動態定價模型便可以此預測結果為基礎,產出定價結果。
zh_TW
dc.description.abstractUnder considerations of economy growth and the car-oriented transport policy, the number of vehicles increases rapidly in recent years. This leads to the problem of lacking parking space, which becomes more and more serious. In large cities, this problem is even worse, where it causes inconvenience to the public. Since the price is important for the transport model choice, parking operators can control the demand of vehicle parking efficiently by increasing parking fee. On the other hand, because most of pricing policies related to parking are inflexible, the revenue of parking lot is capped. According to these reasons, the pricing schemes of parking should be improved.
In order to solve the above problems, a dynamical scheme was proposed for the parking, that is based on the concept of revenue management. During rush hours, the price is higher. The parking lot operators can make more profits, although the number of customers is suppressed. During off-peak hour, the price is lower in order to attract customers. The parking lot operators may encounter lots of problems while implementing the dynamical pricing policy, such as the troubles in notifying customer prices. Therefore, we construct a dynamical pricing model which is based on reservation system.
This thesis assumes that number of customers can be controlled by adjusting parking price. The research is mainly made of two parts, which are the dynamical pricing model and the forecast model. A data preprocessing module was used to remove the outliers and perform missing data interpolation. The forecast model based on ARIMA and Fourier transform is capable of predicting the number of customers. In order to predict the number closer to the actual situation, Kalman filter and k-NN algorithm are employed when updating prediction. The preferred price can then be set by the dynamical pricing model according to the prediction.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:00:48Z (GMT). No. of bitstreams: 1
ntu-105-R03521517-1.pdf: 3407594 bytes, checksum: eba9943da3e04be02d8f9263e820fdd8 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究內容與範圍 2
1.4 研究流程 3
Chapter 2 文獻回顧 6
2.1 智慧停車場 6
2.1.1 智慧停車場概念 6
2.1.2 智慧停車場相關文獻 8
2.2 流量預測 11
2.2.1 流量預測演算法概述 11
2.2.2 流量預測相關文獻 13
2.3 停車定價 16
2.3.1 停車定價概述 16
2.3.2 停車定價相關研究 17
2.4 收益管理 19
2.4.1 收益管理概述 19
2.4.2 收益管理相關研究 19
2.5 文獻回顧小結 22
Chapter 3 顧客需求預測模式建構 24
3.1 流量資料前處理模組 24
3.1.1 漏失值處理 26
3.1.2 離群值處理 27
3.1.3 每日資料檢視處理 28
3.1.4 曲線擬合 29
3.1.5 資料前處理流程 32
3.2 顧客需求預測模組 34
3.2.1 整合移動平均自回歸模型 34
3.2.2 離散時間傅立葉轉換技術 37
Chapter 4 定價策略制定模式建構 41
4.1 需求更新模組 41
4.1.1 卡曼濾波法 41
4.1.2 K最近鄰法 46
4.2 動態定價模型建構模組 50
4.2.1 預約系統願付價格分佈 50
4.2.2 額外顧客到達率 54
4.2.3 動態價格制定模型 55
Chapter 5 數值實驗設計與分析 58
5.1 實驗範圍 58
5.2 預測績效評估指標 60
5.3 需求預測模組績效評估 61
5.4 需求更新模組績效評估 67
5.5 動態定價 69
5.5.1 參數設定 69
5.5.2 定價結果 71
Chapter 6 結論與建議 79
6.1 結論 79
6.2 建議 80
REFERENCE 82
附錄 86
dc.language.isozh-TW
dc.subject流量預測zh_TW
dc.subject收益管理zh_TW
dc.subject停車場預約系統zh_TW
dc.subject智慧停車場zh_TW
dc.subject動態定價zh_TW
dc.subject流量預測zh_TW
dc.subject收益管理zh_TW
dc.subject停車場預約系統zh_TW
dc.subject智慧停車場zh_TW
dc.subject動態定價zh_TW
dc.subjectDynamic Pricingen
dc.subjectIntelligent Parking Systemen
dc.subjectParking Space Reservation Systemen
dc.subjectRevenue Managementen
dc.subjectTraffic Forecasten
dc.subjectIntelligent Parking Systemen
dc.subjectParking Space Reservation Systemen
dc.subjectRevenue Managementen
dc.subjectTraffic Forecasten
dc.subjectDynamic Pricingen
dc.title停車場預約系統之車位定價研究zh_TW
dc.titleA Study of Pricing on Parking Space Reservation Systemen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陶治中,黃文鑑
dc.subject.keyword智慧停車場,停車場預約系統,收益管理,流量預測,動態定價,zh_TW
dc.subject.keywordIntelligent Parking System,Parking Space Reservation System,Revenue Management,Traffic Forecast,Dynamic Pricing,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201600794
dc.rights.note有償授權
dc.date.accepted2016-07-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved