Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50820
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均(Jian-Jiun Ding)
dc.contributor.authorJi-Ting Wuen
dc.contributor.author巫季庭zh_TW
dc.date.accessioned2021-06-15T13:00:20Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citation[1] H. Freeman, “Computer processing of line drawing images,” ACM Computing Surveys, vol. 6, pp. 57-59, 1974.
[2] J.-J. Ding, I.-H. Wang, and H.-Y. Chen, “Improved efficiency on adaptive arithmetic coding for data compression using range-adjusting scheme increasingly adjusting Step and mutual-learning scheme,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 12, pp. 3412-3423, Dec. 2018.
[3] P. G. Howard and J. S. Vitter, 'Analysis of arithmetic coding for data compression,' Inf. Process. Manage., vol. 28, no. 6, pp. 749-763, Dec. 1992.
[4] Y. K. Liu and B. Zalik, “An efficient chain code with Huffman coding,” Pattern Recognition, vol. 38, pp. 553-557, 2005.
[5] E. Bribiesca, 'A new chain code', Pattern Recogn., vol. 32, pp. 235-251, 1999.
[6] Nobutaka Kuroki, Takahiro Manabe and Masahiro Numa, 'Adaptive arithmetic coding for image prediction errors,' ISCAS, pp. 1-5, 2004.
[7] J. Ding, C. Hsiao, and L. Chen, “Advanced contour compression algorithm using weighted curvature, Lagrange curve approximation, and improvement Adaptive arithmetic coding,” pp. 1–5, 2015.
[8] L. E. Aguinaga, R. A. Neri-Calderon and R. M. Rodriguez-Dagnino, 'Compression rates comparison of entropy coding for three-bit chain codes of bilevel images,' SPIE Opt. Eng., vol. 46, no. 8, 087007, 2007.
[9] H. Sánchez-Cruz, H.H. Lopeź-Valdez, “Equivalence of chain codes,” J. Electronic Imaging, vol. 23, no. 1, pp. 13-31, 2014.
[10] Z. Li, S. Beugnon, W. Puech and A. G. Bors, 'Rethinking the high capacity 3D steganography: Increasing its resistance to steganalysis,' 2017 IEEE International Conference on Image Processing (ICIP), Beijing, 2017, pp. 510-414.
[11] D. A. Huffman, “A method for the construction of minimum redundancy codes,” Proceedings of the IRE, vol. 40, pp. 1098-1101, 1952.
[12] C. Gonzales, L. Allman, T. McCarthy, P. Wendt and A. Akansu, 'DCT Coding for Motion Video Storage Using Adaptive Arithmetic Coding,' Signal Processing: Image Communication, pp. 145-154, 1990.
[13] Y. K. Liu and B. Zalik, 'An efficient chain code with Huffman coding,' Pattern Recognit., vol. 38, no. 4, pp. 553-555, Apr. 2005.
[14] D. Marpe, H. Schwarz and T. Wiegand, 'Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620-636, July 2003.
[15] N. V. Boulgouris, D. Tzovaras and M. G. Strintzis, 'Lossless image compression based on optimal prediction, adaptive lifting, and conditional arithmetic coding,' IEEE Transactions on Image Processing, vol. 10, no. 1, pp. 1-14, Jan. 2001.
[16] L. Zhang, D. Wang and D. Zheng, 'Improved adaptive arithmetic coding based on optimal segmentation of code symbols for lossless motion vector coding,' 2011 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Nuremberg, 2011, pp. 1-5.
[17] S. Takamura and M. Takagi, 'Lossless image compression with lossy image using adaptive prediction and arithmetic coding,' Proceedings of IEEE Data Compression Conference (DCC'94), Snowbird, UT, USA, 1994, pp. 166-174.
[18] Xia Lan-yi and Dai Shu-guang, 'Circle and circular arc detection algorithm research based on Freeman chain code,' 2013 IEEE 4th International Conference on Electronics Information and Emergency Communication, Beijing, 2013, pp. 230-233.
[19] P. Elia and J. Ding, 'Morphological Residue Encoding and Piecewise Approximation Techniques for Lossless Binary Image Compression,' 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Bangkok, Thailand, 2019, pp. 353-356.
[20] X. Wang, G. Doretto, T. Sebastian, J. Rittscher and P. Tu, 'Shape and Appearance Context Modeling,' 2007 IEEE 11th International Conference on Computer Vision, Rio de Janeiro, 2007, pp. 1-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50820-
dc.description.abstract在二值影像壓縮中,形狀在許多子主題中都起著重要作用,包括對象識別,模板匹配,圖像分析等。因此,只要我們能夠很好地編碼對象的形狀,這些應用程序的效率就會大大提高。提出的方法可以分為兩部分,無損部分和有損部分。
在有損情況下,我們使用輪廓近似技術並從學長的研究進行校正。首先,我們計算輪廓中每個點的曲率。如果該點的曲率大於閾值,則將其視為“主要點”,並且我們可以通過三階多項式近似兩個主要點之間的線段。添加優勢點的時機和位置選擇方法是我們工作中的重要問題。
但是,我們發現在某些複雜的輪廓情況下,輪廓的部分包含太多“主要點”,無法有效壓縮。在這種情況下,我們用角度弗里曼鏈碼,並利用改進的自適應算術編碼來編碼。
在無損情況下,我們不使用輪廓逼近,而是使用AF8記錄輪廓。然後,我們通過許多技巧改進了自適應算術編碼,並對AF8生成的字符進行了編碼。
最後,模擬結果表明,我們提出的方法比最新的二進制圖像壓縮方法具有更好的壓縮率。
zh_TW
dc.description.abstractIn binary image compression, the shape plays an important role in many subtopics, including object recognition, template matching, image analysis, etc. Therefore, as long as we can well encode the shape of an object, the efficiency of these applications will be much improved. The proposed work could be divided into two parts, lossless and lossy case.
In the part of lossy case, we use technique of contour approximation with correction from work of upperclassmen. First, we calculate the curvature of every points in a contour. The point will be treated as the “dominant point” if its curvature is larger than threshold and we can approximate the segment between two dominant points by a polynomial of 3rd order. The time of adding dominant point and the method of choosing position are important issues in our work.
However, we found that in some of complex contour cases, parts of contour contain too many dominant point to be compressed efficiently. In this case, we apply the angle freeman chain code , and encode with improved adaptive arithmetic coding.
In the part of lossless case, we do not use contour approximation, instead, we use angle Freeman chain code for 8 connectivity to record contour. Then, we improved the adaptive arithmetic coding with many skills, and encode character generated from AF8.
Finally, simulation results show that our proposed method achieves better compression ratio than state-of-the-art binary image compression methods.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:00:20Z (GMT). No. of bitstreams: 1
U0001-1008202019430900.pdf: 2962236 bytes, checksum: bc87dc0e8379e3e0cfdf14bf796abe7f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES viii
Chapter 1 Introduction 1
Chapter 2 Fundamentals 3
2.1 Chain Codes 3
2.1.1 Freeman 8(4)-Directional Chain Code 4
2.1.2 Vertex Chain Code 5
2.1.3 Three Orthogonal Chain Code(3OT) 5
2.1.4 Advanced Angle Freeman 8 Chain Code(AAF8) 6
2.2 Entropy Coding 7
2.2.1 Huffman Coding 8
2.2.2 Static Arithmetic Coding 10
2.2.3 Adaptive Arithmetic Coding 12
Chapter 3 Proposed Lossless Image Compression with Angle Freeman Chain Code for 8 Connectivity 14
3.1 Introduction 14
3.2 Related Work 16
3.3 Character decreasing 18
3.4 Initial Frequency Table 20
3.5 Local Frequency Table 21
3.5.1 Decrease Character of Edge Pixel 22
3.5.2 Optimization after Turning Right 24
3.5.3 Character Decreasing of Turning Left 26
3.6 Adjusting Step Size 27
3.7 Context Modeling 28
3.8 Mutual learning 32
3.9 Frequency Table by Recent K Input 35
Chapter 4 Proposed Lossy Image Compression with Contour Approximation 36
4.1 Introduction 36
4.2 Curvature Measure 41
4.3 Dominant Points Searching 43
4.4 Connection Curves Approximation 44
4.4.1 Coordinate projection 45
4.4.2 Coefficient from Lagrange interpolation 47
4.4.3 Curve Reconstruction 49
4.5 Average Error and Integral Minimum Point Distance 51
4.6 Optimization of Choosing Dominant Point 53
Chapter 5 Simulation Result 55
Chapter 6 Conclusion and Future Work 68
6.1 Conclusions 68
6.2 Future Work 68
REFERENCE 69
dc.language.isoen
dc.subject二元特徵點zh_TW
dc.subject影像壓縮zh_TW
dc.subject資料壓縮zh_TW
dc.subject熵編碼zh_TW
dc.subject鏈碼zh_TW
dc.subject輪廓近似zh_TW
dc.subject二元特徵點zh_TW
dc.subject影像壓縮zh_TW
dc.subject資料壓縮zh_TW
dc.subject熵編碼zh_TW
dc.subject輪廓近似zh_TW
dc.subject鏈碼zh_TW
dc.subjectContour approximation.en
dc.subjectEntropy codingen
dc.subjectData compressionen
dc.subjectImage compressionen
dc.subjectBinary feature pointen
dc.subjectChain codeen
dc.subjectContour approximation.en
dc.subjectEntropy codingen
dc.subjectData compressionen
dc.subjectImage compressionen
dc.subjectBinary feature pointen
dc.subjectChain codeen
dc.title二值影像壓縮用可適性算術編碼zh_TW
dc.titleImproved Adaptive Arithmetic Coding for Binary Image
Compression
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee簡鳳村(Feng-Tsun Chien),夏至賢(Chih-Hsien Hsia),蘇柏青(Po-Ching Su)
dc.subject.keyword熵編碼,資料壓縮,影像壓縮,二元特徵點,鏈碼,輪廓近似,zh_TW
dc.subject.keywordEntropy coding,Data compression,Image compression,Binary feature point,Chain code,Contour approximation.,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202002865
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202019430900.pdf
  未授權公開取用
2.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved