Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50817
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林發暄(Fa-Hsuan Lin)
dc.contributor.authorYi-Tien Lien
dc.contributor.author李宜恬zh_TW
dc.date.accessioned2021-06-15T13:00:09Z-
dc.date.available2016-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-12
dc.identifier.citationBailey DL, Townsend DW, Valk PE, Maisey MN. 2005. Positron emission tomography: Springer.
Beckmann CF, DeLuca M, Devlin JT, Smith SM. (2005): Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London B: Biological Sciences 360(1457):1001-1013.
Behzadi Y, Restom K, Liau J, Liu TT. (2007): A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37(1):90-101.
Bharat Biswal, F. Zerrin Yetkin, Victor M. Haughton, Hyde JS. (1995): Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI. Magnetic Resonance in Medicine 34(4):537-541.
Birn RM, Smith MA, Jones TB, Bandettini PA. (2008): The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage 40(2):644-54.
Brownell GL, Sweet WH. (1953): Localization of brain tumors with positron emitters. Nucleonics 11(11):40-45.
Buckner RL, Andrews‐Hanna JR, Schacter DL. (2008): The brain's default network. Annals of the New York Academy of Sciences 1124(1):1-38.
Buckner RL, Carroll DC. (2007): Self-projection and the brain. Trends in Cognitive Sciences 11(2):49-57.
Carusone LM, Srinivasan J, Gitelman DR, Mesulam MM, Parrish TB. (2002): Hemodynamic Response Changes in Cerebrovascular Disease: Implications for Functional MR Imaging. American Journal of Neuroradiology 23(7):1222-1228.
Chang C, Cunningham JP, Glover GH. (2009): Influence of heart rate on the BOLD signal: the cardiac response function. NeuroImage 44(3):857-69.
Chang C, Glover GH. (2009): Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47(4):1448-59.
Cole DM, Smith SM, Beckmann CF. (2010): Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Frontiers in systems neuroscience 4:8.
Fox MD, Zhang D, Snyder AZ, Raichle ME. (2009): The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6):3270-83.
Gary H. Glover T-QLaR. (2000): Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine 44(1):162-167.
Ghatan PH, Hsieh JC, Wirsén-Meurling A, Wredling R, Eriksson L, Stone-Elander S, Levander S, Ingvar M. (1995): Brain Activation Induced by the Perceptual Maze Test: A PET Study of Cognitive Performance. NeuroImage 2(2, Part A):112-124.
Girouard H, Iadecola C. (2005): Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. Journal of Applied Physiology 100(1):328-335.
Girouard H, Iadecola C. (2006): Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. Journal of Applied Physiology 100(1):328-335.
Gorges M, Müller H-P, Lulé D, Ludolph AC, Pinkhardt EH, Kassubek J. (2013): Functional Connectivity Within the Default Mode Network Is Associated With Saccadic Accuracy in Parkinson's Disease: A Resting-State fMRI and Videooculographic Study. Brain Connectivity 3(3):265-272.
Greg Allen HB, Roderick McColl, Andrea L. Hester, Julie A. Fields, Myron F. Weiner, Wendy K. Ringe, Anne M. Lipton, Matthew Brooker, Elizabeth McDonald, Craig D. Rubin, C. Munro Cullum. (2007): Reduced Hippocampal Functional Connectivity in Alzheimer Disease. Archives of Neurology 64(10):1482-1487.
Gunnar Krüger, Glover GH. (2001): Physiological Noise in Oxygenation-Sensitive Magnetic Resonance Imaging. Magnetic Resonance in Medicine 46(4):631-637.
Gusnard DA, Raichle ME. (2001): Searching for a baseline: Functional imaging and the resting human brain. Nat Rev Neurosci 2(10):685-694.
Handwerker DA, Ollinger JM, D'Esposito M. (2004): Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses. Neuroimage 21(4):1639-1651.
Hutchinson M, Schiffer W, Joseffer S, Liu A, Schlosser R, Dikshit S, Goldberg E, Brodie JD. (1999): Task-specific deactivation patterns in functional magnetic resonance imaging. Magnetic Resonance Imaging 17(10):1427-1436.
Hutton C, Josephs O, Stadler J, Featherstone E, Reid A, Speck O, Bernarding J, Weiskopf N. (2011): The impact of physiological noise correction on fMRI at 7 T. NeuroImage 57(1):101-12.
Krüger G, Glover GH. (2001): Physiological noise in oxygenation‐sensitive magnetic resonance imaging. Magnetic resonance in medicine 46(4):631-637.
Lindquist MA, Loh JM, Atlas LY, Wager TD. (2009): Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Neuroimage 45(1):S187-S198.
Logothetis NK. (2003): The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal. The Journal of Neuroscience 23(10):3963-3971.
Margulies DS, Kelly AC, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. (2007): Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37(2):579-588.
Marumo K, Takizawa R, Kawakubo Y, Onitsuka T, Kasai K. (2009): Gender difference in right lateral prefrontal hemodynamic response while viewing fearful faces: a multi-channel near-infrared spectroscopy study. Neuroscience research 63(2):89-94.
Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. (2009): The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44(3):893-905.
Ogawa S, Lee T-M, Kay AR, Tank DW. (1990): Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences 87(24):9868-9872.
Raichle ME, Mintun MA. (2006): BRAIN WORK AND BRAIN IMAGING. Annual Review of Neuroscience 29(1):449-476.
Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. (2005a): Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum Brain Mapp 26(4):231-9.
Rombouts SARB, Goekoop R, Stam CJ, Barkhof F, Scheltens P. (2005b): Delayed rather than decreased BOLD response as a marker for early Alzheimer's disease. NeuroImage 26(4):1078-1085.
Rosazza C, Minati L. (2011): Resting-state brain networks: literature review and clinical applications. Neurological Sciences 32(5):773-785.
Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE and others. (2013): An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240-56.
Schroeter ML, Zysset S, Kruggel F, Von Cramon DY. (2003): Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. Neuroimage 19(3):555-564.
Sheline YI, Raichle ME, Snyder AZ, Morris JC, Head D, Wang S, Mintun MA. (2010): Amyloid Plaques Disrupt Resting State Default Mode Network Connectivity in Cognitively Normal Elderly. Biological Psychiatry 67(6):584-587.
Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M, Andersson J, Glasser MF and others. (2012): Temporally-independent functional modes of spontaneous brain activity. Proc Natl Acad Sci U S A 109(8):3131-6.
Starck T, Remes J, Nikkinen J, Tervonen O, Kiviniemi V. (2010): Correction of low-frequency physiological noise from the resting state BOLD fMRI—Effect on ICA default mode analysis at 1.5 T. Journal of neuroscience methods 186(2):179-185.
Tohka J, Foerde K, Aron AR, Tom SM, Toga AW, Poldrack RA. (2008): Automatic independent component labeling for artifact removal in fMRI. Neuroimage 39(3):1227-1245.
Triantafyllou C, Hoge R, Krueger G, Wiggins C, Potthast A, Wiggins G, Wald L. (2005): Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243-250.
Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, Jiang T. (2007): Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study. Hum Brain Mapp 28(10):967-78.
Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, Wu T, Jiang T, Li K. (2006): Changes in hippocampal connectivity in the early stages of Alzheimer's disease: Evidence from resting state fMRI. NeuroImage 31(2):496-504.
Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN, Castellanos FX, Milham MP. (2013): A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage 76:183-201.
Yee S-H, Liu H-L, Hou J, Pu Y, Fox PT, Gao J-H. (2000): Detection of the brain response during a cognitive task using perfusion‐based event‐related functional MRI. NeuroReport 11(11):2533-2536.
Zhang D, Raichle ME. (2010): Disease and the brain's dark energy. Nat Rev Neurol 6(1):15-28.
Zhang N, Rane P, Huang W, Liang Z, Kennedy D, Frazier JA, King J. (2010): Mapping resting-state brain networks in conscious animals. J Neurosci Methods 189(2):186-96.
Zlokovic BV. (2011): Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 12(12):723-38.
 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50817-
dc.description.abstract先前有許多研究指出阿茲海默症患者 (Alzheimer’s disease, AD) 相較於正常人具有不同默認網路模式 (Default mode network, DMN) 的特徵。然而,這些研究卻鮮少考慮了生理雜訊影響的因素。因此,本實驗將針對自發性生理活動對於描述阿茲海默症患者之默認網路模式的影響進行研究,其目的在於檢驗當由自發性心跳以及呼吸所造成的生理雜訊從靜息態功能性核磁共振影像 (functional magnetic resonance imaging, fMRI) 中去除後,其默認網路模式的特徵將會造成多少的改變。
靜息態功能性磁振造影經由T2*加權之平面回波成像 (Echo planer imaging, EPI) 擷取400秒的影像。心跳及呼吸的信號將分別由脈波血氧儀以及呼吸帶監測以及紀錄。我們利用RETROICOR (Gary H. Glover, 2000) 的方式去除與相位相關的生理假影。其餘相較低頻率之生理影響,例如:相同相位卻不同振幅之呼吸變異以及相同相位卻不同時間間隔的心跳速率變異,將由RVHRCOR (Chang and Glover, 2009) 的方式做校正。
校正生理訊號以前,阿茲海默症患者與正常對照組相比具有不同的默認網路模式之特徵,然而,這個差異在生理訊號影響被去除後將不能再被顯著地觀察到。此外,我們也發現阿茲海默症患者與正常對照組在由呼吸體積與心率變率有不同的功能性核磁共振影像反應。我們的研究結果顯示,控制與自發性生理活動相關之能性核磁共振影像信號在取得更加敏感及特異性的阿茲海默症患者之默認網路模式特徵上非常重要。
zh_TW
dc.description.abstractStudies have reported that the Alzheimer's disease (AD) patients have different default mode network (DMN) characteristics from normal subjects. However, few studies considered the contamination of physiological noise in DMN characterization. Here, we study the impact of spontaneous physiology on characterizing the DMN of AD patients.
Cardiac and respiratory cycles were respectively recorded using a pulse oximeter and a respiration belt concurrently with resting-state fMRI measurements. We used RETROICOR to remove phase-locked physiological artifacts. Other low frequency physiological effects of the same phase but different amplitudes (for respiration variations) or intervals (for heart rate) were corrected by RVHRCOR.
Without correcting physiological noise, AD patients show significantly different DMN characteristics from the healthy subjects. However, this difference became less significant physiological noise correction. We also found that the physiological response functions were different between AD patients and healthy subjects. Our results suggest the importance of controlling spontaneous physiology in using hemodynamic responses to achieve more sensitive and specific characterization of the DMN in AD patients and healthy subjects.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T13:00:09Z (GMT). No. of bitstreams: 1
ntu-105-R03548034-1.pdf: 4537347 bytes, checksum: c6fa6530a899fbe88ef4b89eff5ef65c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 Methods 5
2.1 Materials 5
2.1.1 Subjects 5
2.1.2 MRI Data Acquisition 5
2.1.3 Physiological monitoring 6
2.2 Data Analysis 6
2.2.1 Preprocessing 6
2.2.2 Physiological Noise Correction 7
2.2.3 Resting-State Functional Connectivity Analysis 8
2.2.4 Image Quality Analysis 9
2.2.5 Group-Specific Physiological Response Analysis 10
Chapter 3 Results 13
3.1 Subjects 13
3.2 Cardiac and respiratory fluctuation measurements 13
3.3 fMRI time series analyses 14
3.3.1 Temporal signal-to-noise ratio (tSNR) 14
3.3.2 Effects of RV and HR 16
3.4 Functional connectivity analysis 17
3.4.1 DMN characterization 17
3.4.2 Comparing DMN’s between AD patients and healthy controls 20
3.4.3 DMN’s before and after physiological noise correction 22
3.4.4 Interaction between physiological noise correction and subject groups 24
3.5 Physiological response functions 25
Chapter 4 Discussion 26
4.1 ICA vs. Seed-based analysis 27
4.2 Effects of Global Signal Regression (GSR) 27
4.3 Physiological Response Function 28
4.4 Sampling Rate Affects PRF Feature Detection and Correcting Physiological Noise Methods 32
4.5 Other diseases 33
Chapter 5 Conclusion 34
REFERENCES 35
Appendix 38
dc.language.isoen
dc.subjectRVHRCORzh_TW
dc.subjectRETROICORzh_TW
dc.subject阿茲海默症zh_TW
dc.subject生理雜訊zh_TW
dc.subject默認網路模式zh_TW
dc.subject靜息態zh_TW
dc.subject阿茲海默症zh_TW
dc.subject靜息態zh_TW
dc.subject默認網路模式zh_TW
dc.subject生理雜訊zh_TW
dc.subjectRETROICORzh_TW
dc.subjectRVHRCORzh_TW
dc.subject功能性核磁共振影像zh_TW
dc.subject老化zh_TW
dc.subject老化zh_TW
dc.subject功能性核磁共振影像zh_TW
dc.subjectagingen
dc.subjectAlzheimer’s diseaseen
dc.subjectresting-stateen
dc.subjectdefault mode networken
dc.subjectphysiological noiseen
dc.subjectRETROICORen
dc.subjectRVHRCORen
dc.subjectfMRIen
dc.subjectagingen
dc.subjectAlzheimer’s diseaseen
dc.subjectresting-stateen
dc.subjectdefault mode networken
dc.subjectphysiological noiseen
dc.subjectRETROICORen
dc.subjectRVHRCORen
dc.subjectfMRIen
dc.title自發生理活動對描述阿茲海默症患者靜息態功能性核磁共振影像之影響zh_TW
dc.titleEffect of Spontaneous Physiology on Characterizing the Resting-State Functional Magnetic Resonance Imaging of Alzheimer’s Disease Patientsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾孝文(Hsiao-Wen Chung),邱銘章(Ming-Chang Chiu),傅中玲(Chung-Ling Fuh)
dc.subject.keyword阿茲海默症,靜息態,默認網路模式,生理雜訊,RETROICOR,RVHRCOR,功能性核磁共振影像,老化,zh_TW
dc.subject.keywordAlzheimer’s disease,resting-state,default mode network,physiological noise,RETROICOR,RVHRCOR,fMRI,aging,en
dc.relation.page43
dc.identifier.doi10.6342/NTU201600705
dc.rights.note有償授權
dc.date.accepted2016-07-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved