Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50814
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馮世邁(See-May Phoong)
dc.contributor.authorTzu-Chiao Linen
dc.contributor.author林子喬zh_TW
dc.date.accessioned2021-06-15T12:59:58Z-
dc.date.available2016-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-12
dc.identifier.citation[1] “2nd Generation Terrestrial: The World's Most Advanced Digital Terrestrial TV System,' DVB Project, Aug. 2015.
[2] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band,' IEEE Standard 802.11a-1999-Part 11, 1999.
[3] “Asymmetrical Digital Subscriber Line (ADSL) Transceivers,' International Telecommunications Union, ITU Recommendation G.992.1, 1999.
[4] 3GPP TS 36.300, 3rd Generation Partnership Project Technical Specification Group Radio Access Network, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8).'
[5] B. Razavi, “Design Considerations for Direct-Conversion Receiver,' IEEE TCAS-II: Analog and Digital Signal Process., vol. 44, no. 6, pp. 428-435, June 1997.
[6] T. Pollet, M. van Bladel, and M. Moeneclaey, “BER Sensitivity of OFDM Systems to Carrier Frequency Offset and Wiener Phase Noise,' IEEE Transactions on Communications, vol. 43, no. 2-4, pp. 191-193, Feb.-Apr. 1995.
[7] V. K.-P. Ma and T. Ylamurto, “Analysis of IQ Imbalance on Initial Frequency Offset Estimation in Direct Down-Conversion Receivers,' IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 158-161, Mar. 2001.
[8] M. Morelli, A. N. D'Andrea, and U. Mengali, “Frequency Ambiguity Resolution in OFDM Systems,' IEEE Communication Letters, vol. 4, no. 4, pp. 134-136, Apr. 2000.
[9] T. M. Schmidl and D. C. Cox, “Robust Frequency and Timing Synchronization for OFDM,' IEEE Transactions on Communications, vol. 45, no. 12, pp. 1613-1621, Dec. 1997.
[10] H. Minn, V. K. Bhargava, and K. Ben Letaief, “A Robust Timing and Frequency Synchronization for OFDM Systems,' IEEE Transactions on Wireless Communications, vol. 2, no. 4, pp. 822-839, July 2003.
[11] Z. Zhang, W. Jiang, H. Zhou, Y. Liu, and J. Gao, “High Accuracy Frequency Offset Correction with Adjustable Acquisition Range in OFDM Systems,' IEEE Transactions on Wireless Communications, vol. 4, no. 1, pp. 228-237, Jan. 2005.
[12] J.-C. Lin, “Coarse Frequency-Offset Acquisition via Subcarrier Differential Detection for OFDM Communications,' IEEE Transactions on Communications, vol. 54, no. 8, pp. 1415-1426, Aug. 2006.
[13] M. Ghogho, P. Ciblat, A. Swami, and P. Bianchi, “Training Design for Repetitive-Slot-Based CFO Estimation in OFDM,' IEEE Transactions on Signal Processing, vol. 57, no. 12, pp. 4958-4964, Dec. 2009.
[14] M. Morelli and M. Moretti, “Carrier Frequency Offset Estimation for OFDM Direct-Conversion Receivers,' IEEE Transactions on Wireless Communications, vol. 11, no. 7, pp. 2670-2679, July 2012.
[15] H. Lin, H.M.S.B. Senevirathna, and K. Yamashita, “A Novel Blind Integer CFO Estimator for OFDM Systems,' IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1-4, Sep. 2006.
[16] Y. Yao and G. B. Giannakis, “Blind Carrier Frequency Offset Estimation in SISO, MIMO, and Multiuser OFDM Systems,' IEEE Transactions on Communications, vol. 53, no. 1, pp. 173-183, Jan. 2005.
[17] T. Roman and V. Koivunen, “Subspace Method for Blind CFO Estimation for OFDM Systems with Constant Modulus Constellations,' IEEE Vehicular Technology Conference (VTC), pp. 1253-1257, May-June 2005.
[18] L. Wu, X.-D. Zhang, P.-S. Li, and Y.-T. Su, “A Closed-Form Blind CFO Estimator Based on Frequency Analysis for OFDM Systems,' IEEE Transactions on Wireless Communications, vol. 57, no. 6, pp. 1634-1637, June 2009.
[19] X. N. Zeng and A. Ghrayeb, “A Blind Carrier Frequency Offset Estimation Scheme for OFDM Systems with Constant Modulus Signaling,' IEEE Transactions on Communications, vol. 56, no. 7, pp. 1032-1037, July 2008.
[20] L. Wu, X.-D. Zhang, P.-S. Li, and Y.-T. Su, “A Blind CFO Estimator Based on Smoothing Power Spectrum for OFDM Systems,' IEEE Transactions on Communications, vol. 57, no. 7, pp. 1924-1927, July 2009.
[21] X. N. Zeng and A. Ghrayeb, “CFO Estimation Schemes for Differential OFDM Systems,' IEEE Transactions on Wireless Communications, vol. 8, no. 1, pp. 124-129, Jan. 2009.
[22] A. Al-Dweik, A. Hazmi, S. Younis, B. Sharif, and C. Tsimenidis, “Carrier Frequency Offset Estimation for OFDM Systems Over Mobile Radio Channels,' IEEE Transactions on Vehicular Technology, vol. 59, no. 2, pp. 974-979, Feb. 2010.
[23] W. Xu and Z. Hong, “Blind CFO Estimation for Constant Modulus Signaling Based OFDM Systems,' IEEE International Conference on Communications (ICC), pp. 1-5, May 2010.
[24] S. Lmai, A. Bourre, C. Laot, and S. Houcke, “An Efficient Blind Estimation of Carrier Frequency Offset in OFDM Systems,' IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1945-1950, May 2014.
[25] T. Roman, S. Visuri, and V. Koivunen, “Blind Frequency Synchronization in OFDM via Diagonality Criterion,' IEEE Transactions on Signal Processing, vol. 54, no. 8, pp. 3125-3135, Aug. 2006.
[26] T. Fusco and M. Tanda, “Blind Synchronization for OFDM Systems in Multipath Channels,' IEEE Transactions on Wireless Communications, vol. 8, no. 3, pp. 1340-1348, Mar. 2009.
[27] H.-G. Jeon, K.-S. Kim, and E. Serpedin, “An Efficient Blind Deterministic Frequency Offset Estimator for OFDM Systems,' IEEE Transactions on Communications, vol. 59, no. 4, pp. 1133-1141, Apr. 2011.
[28] H. Liu and U. Tureli, “A High-Efficiency Carrier Estimator for OFDM Communications,' IEEE Communications Letters, vol. 2, pp. 104-106, Apr. 1998.
[29] F. Gao and A. Nallanathan, “Blind Maximum Likelihood CFO Estimation for OFDM Systems via Polynomial Rooting,' IEEE Signal Processing Letters, vol. 13, no. 2, pp. 73-76, Feb. 2006.
[30] M. M. Qasaymeh, H. Gami, N. Tayem, M. E. Sawan, and R. Pendse, “Joint Time Delay and Frequency Estimation without Eigen-Decomposition,' IEEE Signal Processing Letters, vol. 16, no. 5, pp. 422-425, May 2009.
[31] U. Tureli, H. Liu, and M. D. Zoltowski, “OFDM Blind Carrier Offset Estimation: ESPRIT,' IEEE Transactions on Communications, vol. 48, no. 9, pp. 1459-1461, Sep. 2000.
[32] W.-J. Tai, Y.-C. Pan, and S.-M. Phoong, “A Simple LS Algorithm for Improving ESPRIT-Based Blind CFO Estimations in OFDM Systems,' IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 2303-2308, Sep. 2012.
[33] J.-J. van de Beek, M. Sandell, and P. O. Borjesson, “ML Estimation of Time and Frequency Offset in OFDM Systems,' IEEE Transactions on Signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.
[34] Q. Cheng, “Residue Carrier Frequency Offset Estimation Using Cyclic Prefix in OFDM Systems,' IEEE Region 10 Conference (TENCON), pp. 1-5, Jan. 2009.
[35] M. Liu, B. Li, and J. Ge, “Blind Estimation for OFDM Fractional Frequency Offset Over Multipath Channels,' Wireless Personal Communications, vol. 79, pp. 119-130, Nov. 2014.
[36] T. Liu and H. Li, “Blind Estimation of Carrier Frequency Offset, I/Q Imbalance and DC Offset for OFDM Systems,' EURASIP Journal on Advances in Signal Processing, vol. 105, pp. 1-9, May 2012.
[37] R. Sharma, H. Lalitha, and N. Kumar, “Design and Development of Non Data Aided Estimation Algorithm for Carrier Frequency-offset and I/Q Imbalancing in OFDM-based Systems,' IEEE International Conference on Wireless and Optical Communications Networks (WOCN), pp. 1-4, July 2013.
[38] W. Xu, Y. Wang, and X. Hu, “Blind Joint Estimation of Carrier Frequency Offset and I/Q Imbalance in OFDM Systems,' Signal Processing, vol. 108, pp. 46-55, Mar. 2015.
[39] H. Sari, G. Karam, and I. Jeanclaude, “Transmission Techniques for Digital Terrestrial TV Broadcasting,' IEEE Communications Magazine, vol. 33, pp. 100-109, Feb. 1995.
[40] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior,' IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[41] S. Katti, S. Gollakota, and D. Katabi, “Embracing Wireless Interference: Analog Network Coding,' Computer Science and Artificial Intelligence Laboratory Technical Report, Feb. 2007.
[42] B. Rankov and A. Wittneben, “Spectral Efficient Signaling for Half-duplex Relay Channels,' Annual Conference on Signals, Systems, and Computers, pp. 1066-1071, Oct. 2005.
[43] B. Rankov and A. Wittneben, “Achievable Rate Regions for the Two-way Relay Channel,' International Symposium on Information Theory (ISIT), pp. 1668-1672, July 2006.
[44] P. Popovski and H. Yomo, “Wireless Network Coding by Amplify-and-Forward for Bi-Directional Traffic Flows,' IEEE Communications Letters, vol. 11, no. 1, pp. 16-18, Jan. 2007.
[45] T. Cui, F. Gao, T. Ho, and A. Nallanathan, “Distributed Space-Time Coding for Two-Way Wireless Relay Networks,' International Conference on Communications (ICC), pp. 3888-3892, May 2008.
[46] R. Zhang, Y.-C. Liang, C. C. Chai, and S. Cui, “Optimal Beamforming for Two-Way Multi-Antenna Relay Channel with Analogue Network Coding,' IEEE Journal on Selected Areas in Communications, vol. 27, no. 5, pp. 699-712, June 2009.
[47] C. Xing, S. Ma, and Y.-C. Wu, “Robust Joint Design of Linear Relay Precoder and Destination Equalizer for Dual-Hop Amplify-and-Forward MIMO Relay Systems,' IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 2273-2283, Apr. 2010.
[48] M. W. Baidas, A. B. MacKenzie, and R. M. Buehrer, “Network-Coded Bi-Directional Relaying for Amplify-and-Forward Cooperative Networks: A Comparative Study,' IEEE Transactions on Wireless Communications, vol. 12, no. 7, pp. 3238-3252, July 2013.
[49] F. Gao, R. Zhang, and Y.-C. Liang, “Optimal Channel Estimation and Training Design for Two-Way Relay Networks,' IEEE Transactions on Communications, vol. 57, no. 10, pp. 3024-3033, Oct. 2009.
[50] F. Gao, R. Zhang, and Y.-C. Liang, “Channel Estimation for OFDM Modulated Two-Way Relay Networks,' IEEE Transactions on Signal Processing, vol. 57, no. 11, pp. 4443-4455, Nov. 2009.
[51] L. Sanguinetti, A. A. D'Amico, and Y. Rong, “A Tutorial on the Optimization of Amplify-and-Forward MIMO Relay Systems,' IEEE Journal on Selected Areas in Communications, vol. 30, no. 8, pp. 1331-1346, Sep. 2012.
[52] C. W. R. Chiong, Y. Rong, and Y. Xiang, “Channel Training Algorithms for Two-Way MIMO Relay Systems,' IEEE Transactions on Signal Processing, vol. 61, no. 16, pp. 3988-3998, Aug. 2013.
[53] S. Abdallah and I. N. Psaromiligkos, “Blind Channel Estimation for Amplify-and-Forward Two-Way Relay Networks Employing M-PSK Modulation,' IEEE Transactions on Signal Processing, vol. 60, no. 7, pp. 3604-3615, July 2012.
[54] Q. Zhao, Z. Zhou, J. Li, and B. Vucetic, “Joint Semi-Blind Channel Estimation and Synchronization in Two-Way Relay Networks,' IEEE Transactions on Vehicular Technology, vol. 63, no. 7, pp. 3276-3293, Sep. 2014.
[55] X. Xie, M. Peng, B. Zhao, W. Wang, and Y. Hua, “Maximum a Posteriori Based Channel Estimation Strategy for Two-Way Relaying Channels,' IEEE Transactions on Wireless Communications, vol. 13, no. 1, pp. 450-463, Jan. 2014.
[56] X. Liao, L. Fan, and F. Gao, “Blind Channel Estimation for OFDM Modulated Two-Way Relay Network,' Wireless Communications and Networking Conference (WCNC), pp. 1-5, Apr. 2010.
[57] F. Gao, Y. Zeng, A. Nallanathan, and T.-S. Ng, “Robust Subspace Blind Channel Estimation for Cyclic Prefixed MIMO OFDM Systems: Algorithm, Identifiability and Performance Analysis,' IEEE Journal on Selected Areas in Communications, vol. 26, no. 2, pp. 378-388, Feb. 2008.
[58] B. Su and P. P. Vaidyanathan, “Subspace-Based Blind Channel Identification for Cyclic Prefix Systems Using Few Received Blocks,' IEEE Transactions on Signal Processing, vol. 55, no. 10, pp. 4979-4993, Oct. 2007.
[59] Y.-C. Pan and S.-M. Phoong, “An Improved Subspace-Based Algorithm for Blind Channel Identification Using Few Received Blocks,' IEEE Transactions on Communications, vol. 61, no. 9, pp. 3710-3720, Sep. 2013.
[60] B. Su, “Subspace-based Blind and Semiblind Channel Estimation in OFDM Systems with Virtual Carriers Using Few Received Symbols,' International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 100-104, June 2014.
[61] R. M. Gray, Toeplitz and Circulant Matrices: A review, Boston: Now Publishers, 2006.
[62] J. Li, G. Liu, and G. B. Giannakis, “Carrier Frequency Offset Estimation for OFDM-Based WLANs,' IEEE Signal Processing Letters, vol. 8, no. 3, pp. 80-82, Mar. 2001.
[63] F. Yan, W.-P. Zhu, and M. O. Ahmad, “Carrier Frequency Offset Estimation and I/Q Imbalance Compensation for OFDM Systems,' EURASIP Journal on Advances in Signal Processing, vol. 2007, article ID 45364.
[64] J. G. Proakis and M. Salehi, Digital Communications, fifth edition, McGraw-Hill press, 2008.
[65] H. J. Larson and B. O. Shubert, Probabilistic Models in Engineering Sciences, Vols. I and II, first edition, New York: Wiley, 1979.
[66] B. Picinbono, “Second-Order Complex Random Vectors and Normal Distributions,' IEEE Transactions on Signal Processing, vol. 44, no. 10, pp. 2637-2640, Oct. 1996.
[67] H. L. van Trees, Detection, Estimation, and Modulation Theory: Part I, second edition, New York: Wiley, 2001.
[68] P. S. Bullen, Handbook of Means and Their Inequalities, second edition, Kluwer Academic Publishers, 2003.
[69] T. S. Rappaport, Wireless Communications: Principles and Practice, second edition, Englewood Cliffs, NJ, USA: Prentice Hall, 2002.
[70] P. Dent, G. E. Bottomley, and T. Croft, “Jakes Fading Model Revisited,' IET Electronics Letters, vol. 29, no. 13, pp. 1162-1163, June 1993.
[71] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[72] M. Morelli and U. Mengali, “A Comparison of Pilot-Aided Channel Estimation Methods for OFDM Systems,' IEEE Transactions on Signal Processing, vol. 49, no. 12, pp. 3065-3073, Dec. 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50814-
dc.description.abstract在這篇博士論文中,我們致力於研究正交分頻多工系統之參數盲蔽估測。內容主要分兩個部分。在第一個部分,我們探討了載波頻率偏移和實虛部非協調的問題。在第二個部分,我們研究了雙向中繼站傳輸網路的通道響應之估測。
載波頻率偏移和實虛部非協調是低成本通訊架構中常見的問題。載波頻率偏移會嚴重地破壞正交分頻多工系統當中的正交性,造成錯誤率大幅提升。而實虛部非協調的存在也會影響到載波頻率偏移的估測。因此在論文的第一部分,我們會探討有關載波頻率偏移和實虛部非協調的盲蔽估測問題。
首先,我們提出了一個利用循環前綴的演算法來盲蔽估測正交分頻多工系統中的載波頻率偏移和實虛部非協調問題。類似於其他循環前綴的方法,我們的方法複雜度也很低。在載波頻率偏移估測的部分,我們的方法能有效地對抗時間不同步造成的影響。此外我們還算出了理論上的錯誤率及克雷曼-勞氏邊界。在實虛部非協調估測的部分,我們的方法不需要知道真實的載波頻率偏移量。因此結合上述兩種方法,我們可以解決載波頻率偏移和實虛部非協調同時存在的問題。首先我們先估測被載波頻率偏移影響的實虛部非協調參數。接著將實虛部非協調作適當的補償。最後我們可以估測補償實虛部非協調影響後的載波頻率偏移量。
另一種估測載波頻率偏移和實虛部非協調參數的方法是利用振幅相等的星座圖。其中有個複雜度很低且很有效率的作法叫做頻率分析。頻率分析法相當簡單,但是在許多通訊系統中會有虛擬載波的存在,而虛擬載波會造成頻率分析法的錯誤率大幅提升。因此我們根據頻率分析法的理論基礎來探討虛擬載波造成的影響並提出了適當的修正。並且利用弦波近似和拋物線近似來降低這方法的複雜度。
在過去十年間,中繼站傳輸網路的研究逐漸盛行了起來。其中雙向中繼站傳輸網路因為傳輸率夠高而受到較大的關注。在這篇論文的第二部分,我們研究了放大轉發雙向中繼站傳輸網路的通道響應之估測。並將正交分頻多工系統應用於此類網路。該網路中的通道以兩段式步驟來做估測。首先我們利用能量降低的做法估測自我干擾的通道響應。其次利用子空間的作法估測真正發射端及接收端之間的通道響應。此外我們還算出了理論上的錯誤率及近似的克雷曼-勞氏邊界。
zh_TW
dc.description.abstractIn this dissertation, we study blind algorithms for parametric estimation in orthogonal frequency division multiplexing (OFDM) systems. Our works include two parts. In the first part, we discuss the problem of carrier frequency offset (CFO) and in-phase and quadrature-phase (I/Q) imbalance in OFDM systems. In the second part, we study the identification of channels for OFDM-based amplify-and-forward two-way relay network (AF-TWRN) systems.
CFO and I/Q imbalance are two common front-end imperfections in low-cost communication devices. It is known that CFO is a crucial problem in OFDM systems. It can destroy the orthogonality between subcarriers and cause significant degradation in system performance. Moreover, the existence of the I/Q imbalance usually reduces the accuracy of CFO estimation. In the first part of the thesis, we study blind estimations for CFO and I/Q imbalance.
Firstly, we propose algorithms based on cyclic prefix (CP) for blind estimations of CFO and I/Q imbalance in OFDM transmission over multipath channels. Like other CP-based methods, the proposed methods enjoy low complexity, and closed form formulas are derived. For CFO estimator, the proposed method is very robust to the symbol timing synchronization error. In addition, we also carry out the theoretical mean square error (MSE) analysis and derive the Cramer-Rao bound (CRB). For I/Q parameter estimator, the proposed method does not need to know the CFO value. Hence, by combining these two estimators, we can solve the joint estimation problem of CFO and I/Q imbalance in two stages. First the I/Q parameter is blindly estimated in the presence of CFO and then the CFO can be blindly estimated after compensating the I/Q effect.
Another popular technique for blind estimation of CFO and I/Q imbalance is by exploiting constant modulus (CM) constellations. An effective low cost method, called frequency analysis (FA) method was proposed. The FA methods are simple and have closed form solutions. However, in many existing standards for communications, virtual carriers (VC) are introduced for the purpose of system design. When there are VCs, the FA methods degrade significantly. We propose the algorithms based on FA for blind estimation of CFO in the presence of VCs. The cost functions can be well approximated by sinusoidal and parabolic functions and thus the closed form formulas can still be exploited.
In the last decade, research on wireless relay networks became popular. In particular, the TWRN has drawn a lot of attention because its overall communication rate is approximately twice of that achieved in the one-way relay network (OWRN). In the second part of the thesis, we propose a blind channel estimation algorithm for AF-TWRN. The OFDM modulation is adopted for frequency selective channel. The proposed method can be also applied to zero-padded OFDM systems. The two cascaded channels are estimated in two steps. First the cascaded channel causing the self-interference is estimated using a proposed power reduction method. Then the other cascaded channel from source to destination is estimated by subspace method. Closed form formulas for channel estimates are derived. In addition, we also carry out the theoretical MSE analysis and derive the approximated CRBs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:59:58Z (GMT). No. of bitstreams: 1
ntu-105-F99942054-1.pdf: 1706882 bytes, checksum: a035dd9e515fb77ef7193863c722e800 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsAcknowledgements…xv
Abstract…xix
1 Introduction 1
2 CFO and I/Q Imbalance in Direct-Conversion Receivers…11
2.1 System Model…13
2.2 CFO and I/Q Imbalance…18
2.2.1 Only CFO on the Received Baseband Signal…18
2.2.2 Both CFO and I/Q Imbalance on the Received Baseband Signal…20
2.3 Effect of CFO and I/Q Imbalance on CP-OFDM Systems…22
2.4 Concluding Remarks…26
3 Cyclic-Prefix Based Algorithm for Blind CFO Estimation…27
3.1 System Model…30
3.2 Proposed Method for CFO Estimation…31
3.2.1 Coarse Estimation…33
3.2.2 Fine Estimation…34
3.2.3 In the Presence of Integer CFO…35
3.2.4 Effect of Symbol Timing Synchronization…35
3.3 Performance Analysis…36
3.3.1 Statistical Properties of the Received Signals…36
3.3.2 MSE Analysis for CFO Estimation…41
3.3.3 The Cramer-Rao Bound of CFO…43
3.3.4 Comparison of the Theoretical MSE Formula and the CRB…45
3.4 MSE-Optimized CFO Estimation…47
3.5 Simulation Results…51
3.6 Concluding Remarks…60
4 Cyclic-Prefix Based Algorithm for Blind I/Q Compensation…63
4.1 Blind Estimation of I/Q Imbalance in the Presence of CFO…65
4.1.1 Blind Algorithm for Estimation of I/Q Parameter…68
4.1.2 Joint Estimation of CFO and I/Q Imbalance…69
4.1.3 Complexity of Joint Estimation…69
4.2 Simulation Results…70
4.3 Concluding Remarks…74
5 Frequency Analysis Algorithm for Blind CFO Estimation…75
5.1 Review of FA Method [18]…77
5.2 Extension of the FA Method to OFDM Systems with Virtual Carriers…79
5.3 Low-Complexity Solution…82
5.3.1 Coarse Estimation…84
5.3.2 Fine Estimation…86
5.3.3 Complexity…90
5.4 Simulation Results…91
5.5 Concluding Remarks…94
6 Channel Identification in Relay Systems…95
6.1 Introduction to AF-TWRN [43]…97
6.1.1 OFDM Modulation at Terminals…98
6.1.2 Relay Processing…98
6.1.3 Signal Reformulation at Terminals…99
6.1.4 Data Detection at Terminals…100
6.2 Proposed Method for Channel Estimation…101
6.2.1 The Estimation of h1 …101
6.2.2 The Estimation of h2 …102
6.2.3 A Note on the Identifiability Issue…105
6.2.4 Repeated Use of the Remodulated Vector vk …105
6.2.5 Multiple Relay Nodes…106
6.2.6 The Case of ZP-OFDM Systems…107
6.2.7 Comparison with an Existing Work…108
6.3 Performance Analysis…109
6.3.1 The Analysis of h1 Estimate …109
6.3.2 The Analysis of h2 Estimate …111
6.3.3 Approximated Cramer-Rao Bound…115
6.4 Simulation Results…116
6.5 Concluding Remarks…122
7 Conclusions…123
Publication List…127
A A Generalized Inequality on Power Mean…129
Bibliography…134
List of Notations…144
dc.language.isoen
dc.title正交分頻多工系統之參數盲蔽估測zh_TW
dc.titleBlind Parametric Estimation in OFDM Systemsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee蘇炫榮(Hsuan-Jung Su),蘇柏青(Borching Su),王晉良(Chin-Liang Wang),陳紹基(Sau-Gee Chen),林嘉慶(Jia-Chin Lin)
dc.subject.keyword正交分頻多工系統,盲蔽估測,載波頻率偏移,實虛部非協調,放大轉發雙向中繼站傳輸網路,通道響應,zh_TW
dc.subject.keywordOFDM,blind estimation,CFO,I/Q imbalance,AF-TWRN,channel identification,en
dc.relation.page144
dc.identifier.doi10.6342/NTU201600822
dc.rights.note有償授權
dc.date.accepted2016-07-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
1.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved