請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50810完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 杜裕康 | |
| dc.contributor.author | Hui-Hsuan Hsu | en |
| dc.contributor.author | 許卉萱 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:59:42Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-12 | |
| dc.identifier.citation | 1. Black, R.E., Allen, L.H., Bhutta, Z.A., Caulfield, L.E., de Onis, M., Ezzati, M., Mathers, C., and Rivera, J., Maternal and child undernutrition: global and regional exposures and health consequences. Lancet, 2008. 371(9608): p. 243-260.
2. Caulfield, L.E., de Onis, M., Blossner, M., and Black, R.E., Undernutrition as an underlying cause of child deaths associated with diarrhea, pneumonia, malaria, and measles. American Journal of Clinical Nutrition, 2004. 80(1): p. 193-198. 3. Victora, C.G., Adair, L., Fall, C., Hallal, P.C., Martorell, R., Richter, L., and Sachdev, H.S., Maternal and child undernutrition: consequences for adult health and human capital. Lancet, 2008. 371(9609): p. 340-357. 4. United Nations Development Programme, Human development report 2013. 2013. 5. Ministry of health and population (MOHP), New ERA, and ICF International, 2011 Nepal demographic and health survey (NDHS). 2012. 6. Koirala, P., Kumar, S., Yadav, B.K., and Premarajan, K.C., Occurrence of aflatoxin in some of the food and feed in Nepal. Indian Journal of Medical Sciences, 2005. 59(8): p. 331-336. 7. Outbreak of aflatoxin poisoning-eastern and central provinces, Kenya, January-July 2004. Morbidity and mortality weekly report, 2004. 53(34): p. 790-793. 8. Gong, Y.Y., Turner, P.C., Hall, A.J., and Walker, S.P., Aflatoxin exposure and impaired child growth in West Africa: an unexplored international public health burden?, in Mycotoxins: Detection Methods, Management, Public Health, and Agricultural Trade, J.F. Leslie, R. Bandyopadhyay, and A. Visconti, Editors. 2008: Wallingford, UK. p. 53-66. 9. Watson, S., Chen, G., Sylla, A., Routledge, M.N., and Gong, Y.Y., Dietary exposure to aflatoxin and micronutrient status among young children from Guinea. Molecular Nutrition & Food Research, 2016. 60(3): p. 511-518. 10. Newberne, P.M., The new world of mycotoxins - animal and human health. Clinical Toxicology, 1974. 7(2): p. 161-177. 11. Rheeder, J.P., Marasas, W.F.O., Theil, P.G., Sydenham, E.W., Shephard, G.S., and Van Schalkwyk, D.J., Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology, 1992. 82: p. 353-357. 12. Smith, L.E., Stoltzfus, R.J., and Prendergast, A., Food chain mycotoxin exposure, gut health, and impaired growth: a conceptual framework. Advances in Nutrition, 2012. 3(4): p. 526-531. 13. George, C.M., Oldja, L., Biswas, S.K., Perin, J., Lee, G.O., Ahmed, S., Haque, R., Sack, R.B., Parvin, T., Azmi, I.J., Bhuyian, S.I., Talukder, K.A., and Faruque, A.G., Fecal markers of environmental enteropathy are associated with animal exposure and caregiver hygiene in Bangladesh. The American Journal of Tropical Medicine and Hygiene, 2015. 93(2): p. 269-275. 14. Korpe, P.S. and Petri, W.A., Environmental enteropathy: Critical implications of a poorly understood condition. Trends in Molecular Medicine, 2012. 18(6): p. 328-336. 15. Kosek, M., Haque, R., Lima, A., Babji, S., Shrestha, S., Qureshi, S., Amidou, S., Mduma, E., Lee, G., Yori, P.P., Guerrant, R.L., Bhutta, Z., Mason, C., Kang, G., Kabir, M., Amour, C., Bessong, P., Turab, A., Seidman, J., Olortegui, M.P., Quetz, J., Lang, D., Gratz, J., Miller, M., and Gottlieb, M., Fecal markers of intestinal inflammation and permeability associated with the subsequent acquisition of linear growth deficits in infants. The American Journal of Tropical Medicine and Hygiene, 2013. 88(2): p. 390-396. 16. de Onis, M., WHO child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. 2006, WHO: Geneva. 17. National Research Council Subcommittee on the Tenth Edition of the Recommended Dietary, A., The national academies collection: reports funded by National Institutes of Health. Recommended Dietary Allowances: 10th Edition. 1989, Washington (DC): National Academies Press (US). 18. Global prevalence of vitamin A deficiency in populations at risk 1995-2005. WHO global database on vitamin A deficiency. 2009. 19. Rice, A.L., West Jr, K.P., and Black, R.E., Vitamin A deficiency, in Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, M. Ezzati, et al., Editors. 2004, WHO: Geneva. p. 211-256. 20. Fawzi, W.W., Herrera, M.G., Willett, W.C., Nestel, P., El Amin, A., and Mohamed, K.A., Dietary vitamin A intake in relation to child growth. Epidemiology, 1997. 8(4): p. 402-407. 21. Bhatnagar, S. and Natchu, U.C., Zinc in child health and disease. Indian Journal of Pediatrics, 2004. 71(11): p. 991-995. 22. Black, R.E. and Sazawal, S., Zinc and childhood infectious disease morbidity and mortality. British Journal of Nutrition, 2001. 85: p. S125-S129. 23. Caulfield, L.E. and Black, R.E., Zinc deficiency, in Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors, M. Ezzati, et al., Editors. 2004, WHO: Geneva. p. 257-279. 24. Fischer Walker, C.L., Ezzati, M., and Black, R.E., Global and regional child mortality and burden of disease attributable to zinc deficiency. European Journal of Clinical Nutrition, 2009. 63(5): p. 591-597. 25. Lukacik, M., Thomas, R.L., and Aranda, J.V., A meta-analysis of the effects of oral zinc in the treatment of acute and persistent diarrhea. Pediatrics, 2008. 121(2): p. 326-336. 26. Shankar, A.H. and Prasad, A.S., Zinc and immune function: the biological basis of altered resistance to infection. American Journal of Clinical Nutrition, 1998. 68(2 Suppl): p. 447s-463s. 27. Black, R.E., Victora, C.G., Walker, S.P., Bhutta, Z.A., Christian, P., de Onis, M., Ezzati, M., Grantham-McGregor, S., Katz, J., Martorell, R., and Uauy, R., Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet, 2013. 382(9890): p. 427-451. 28. Campbell, D.I., Elia, M., and Lunn, P.G., Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. Journal of Nutrition, 2003. 133(5): p. 1332-1338. 29. Gong, Y.Y., Hounsa, A., Egal, S., Turner, P.C., Sutcliffe, A.E., Hall, A.J., Cardwell, K., and Wild, C.P., Postweaning exposure to aflatoxin results in impaired child growth: a longitudinal study in Benin, West Africa. Environ Health Perspect, 2004. 112(13): p. 1334-1338. 30. Gong, Y.Y., Cardwell, K., Hounsa, A., Egal, S., Turner, P.C., Hall, A.J., and Wild, C.P., Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: cross sectional study. Bmj, 2002. 325(7354): p. 20-21. 31. Shirima, C.P., Kimanya, M.E., Routledge, M.N., Srey, C., Kinabo, J.L., Humpf, H.U., Wild, C.P., Tu, Y.K., and Gong, Y.Y., A prospective study of growth and biomarkers of exposure to aflatoxin and fumonisin during early childhood in Tanzania. Environmental Health Perspectives, 2015. 123(2): p. 173-178. 32. Saiki, T., Myeloperoxidase concentrations in the stool as a new parameter of inflammatory bowel disease. Kurume Medical Journal, 1998. 45(1): p. 69-73. 33. Sands, B.E., From symptom to diagnosis: clinical distinctions among various forms of intestinal inflammation. Gastroenterology, 2004. 126(6): p. 1518-1532. 34. Husain, N., Tokoro, K., Popov, J.M., Naides, S.J., Kwasny, M.J., and Buchman, A.L., Neopterin concentration as an index of disease activity in Crohn's disease and ulcerative colitis. Journal of Clinical Gastroenterology, 2013. 47(3): p. 246-251. 35. Nancey, S., Boschetti, G., Moussata, D., Cotte, E., Peyras, J., Cuerq, C., Haybrard, J., Charlois, A.L., Mialon, A., Chauvenet, M., Stroeymeyt, K., Kaiserlian, D., Drai, J., and Flourie, B., Neopterin is a novel reliable fecal marker as accurate as calprotectin for predicting endoscopic disease activity in patients with inflammatory bowel diseases. Inflamm Bowel Diseases, 2013. 19(5): p. 1043-1052. 36. Plata-Nazar, K., Luczak, G., Kaminska, B., Bogotko-Szarszewska, M., Renke, J., and Szumera, M., Serum neopterin concentration in children with ulcerative colitis. Pteridines, 2008. 19(1): p. 23-27. 37. Campbell, D.I., McPhail, G., Lunn, P.G., Elia, M., and Jeffries, D.J., Intestinal inflammation measured by fecal neopterin in Gambian children with enteropathy: association with growth failure, Giardia lamblia, and intestinal permeability. Journal of Pediatric Gastroenterology and Nutrition, 2004. 39(2): p. 153-157. 38. Poullis, A., Foster, R., Northfield, T.C., and Mendall, M.A., Review article: faecal Markers in the assessment of activity in inflammatory bowel disease. Aliment Pharmacol Therapeutics, 2002. 16(4): p. 675-681. 39. Karbach, U., Ewe, K., and Bodenstein, H., Alpha 1-antitrypsin, a reliable endogenous marker for intestinal protein loss and its application in patients with Crohn's disease. Gut, 1983. 24(8): p. 718-723. 40. Crossley, J.R. and Elliott, R.B., Simple method for diagnosing protein-Losing enteropathies. British Medical Journal, 1977. 1(6058): p. 428-429. 41. 邱皓政, 結構方程模式(二版): Lisrel/Simplis原理與應用. 2011, 臺北市: 雙葉書廊. 42. Kenny, D.A. and Judd, C.M., Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 1984. 96(1): p. 201-210. 43. Algina, J. and Moulder, B.C., A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3. Structural Equation Modeling: A Multidisciplinary Journal, 2001. 8(1): p. 40-52. 44. Wall, M.M. and Amemiya, Y., Generalized appended product indicator procedure for nonlinear structural equation analysis. Journal of Educational and Behavioral Statistics, 2001. 26(1): p. 1-29. 45. Marsh, H.W., Wen, Z., and Hau, K.T., Structural equation models of latent interactions: evaluation of alternative estimation strategies and indicator construction. Psychol Methods, 2004. 9(3): p. 275-300. 46. Kline, R.B., Principles and Practice of Structural Equation Modeling. Third edition ed. 1998, New York: Guilford. 47. Klein, A.G. and Moosbrugger, H., Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 2000. 65: p. 457-474. 48. Tu, Y.K. and Gilthorpe, M.S., Univariate and Multivariate Data Analysis, in Molecular Epidemiology of Chronic Diseases, C. Wild, P. Vineis, and S. Garte, Editors. 2008, Wiley: England. p. 181-197. 49. Ramakrishnan, U., Nguyen, P., and Martorell, R., Effects of micronutrients on growth of children under 5 y of age: meta-analyses of single and multiple nutrient interventions. American Journal of Clinical Nutrition, 2009. 89(1): p. 191-203. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50810 | - |
| dc.description.abstract | 背景
近年來研究發現,食物中的黃麴黴毒素會影響孩童生長,且可能造成他們生長發育遲緩。黃麴黴毒素是一種黴菌毒素,由真菌產生,常因保存不當造成一些穀類作物受到黃麴黴毒素的污染。另外,研究指出黃麴黴毒素的暴露與微量營養素的缺乏有關係,當孩童攝取愈多受黃麴黴毒素汙染的食物,可能會加劇體內微量營養素缺乏的現象。在發展中國家,兒童時期營養不良和微量營養素缺乏的問題尤為嚴重,這會影響孩童生長發育和健康,嚴重時甚至會導致孩童死亡,對於這些國家而言是個沉重的負擔,同時也是引人關注的一大公共健康問題。 目的 本研究主要目的為探討孩童成長情形與黃麴黴毒素和微量營養素(維生素A和鋅)之間的關係,並且進一步探討黃麴黴毒素與微量營養素間的交互作用是否對孩童成長造成影響。 材料與方法 本研究在尼泊爾當地招募了85位剛出生的孩童參與(最後有77位孩童進入統計分析),每位孩童共有三次測量時間點的資料,分別在其出生後的第15、24和36個月。另外,每位孩童測量資料的取得,會由訓練有素的專業人員蒐集其生長資料 (身高對年齡Z分數(LAZ)、體重對年齡Z分數(WAZ)及體重對身高Z分數(WLZ) ) 、血液中黃麴黴毒素濃度資料、血液中微量營養素濃度資料以及糞便中腸道炎症指標濃度資料等。本研究中所使用的統計分析方法,主要為線性迴歸分析、潛在成長曲線分析(LGCM)以及潛在交互作用分析,觀察孩童成長情形與黃麴黴毒素和微量營養素間的關係,且探討黃麴黴毒素和微量營養素間的交互作用對孩童成長的影響。 結果 我們發現環境性腸病對於孩童成長指標中的WAZ變化量有負面影響,而不同時間點的維生素A對於不同時間點的WAZ和WLZ有正面且顯著影響。此外,第15個月黃麴黴毒素與鋅的交互作用對於不同時間點的WAZ和WLZ有負面且顯著影響,表示黃麴黴毒素對於孩童生長的影響會因為鋅濃度增加而減少。 | zh_TW |
| dc.description.abstract | Background
Recent research showed that dietary exposure to aflatoxin, a type of mycotoxin produced by fungi that contaminate staple cereal crops, may affect child growth, possibly through impaired gut function. On the other hand, some studies indicated that aflatoxin exposure coincided with micronutrient deficiencies in developing countries and it possibly exacerbated micronutrient deficiencies. Malnutrition and micronutrient deficiencies during childhood have been serious public health problems in developing countries, and the burden of child growth impairment, health problems, and death attributed to these factors remains high. Objective The main objective of this study is to investigate the associations of child growth with aflatoxin and micronutrients (vitamin A and zinc). We also would like to investigate whether there was interaction effect between aflatoxin and micronutrients on child growth. Materials and Methods There were 85 new born children recruited in Nepal (77 children for statistical analysis), and measurements were taken on three occasions for each child, at ages of 15, 24 and 36 months. For each child, trained researchers collected growth data (length-for-age Z score (LAZ), weight-for-age Z score (WAZ), and weight-for-length Z score (WLZ)), aflatoxin levels in blood, micronutrients levels in blood, and gut inflammation levels in stool. In the study, we used linear regression model, latent growth curve model (LGCM), and latent interaction model to investigate the associations of child growth indices with aflatoxin and micronutrients (vitamin A and zinc) and interaction effect of aflatoxin and micronutrients on child growth. Results We found that environmental enteropathy (EE) was negatively associated with changes in WAZ between 15 and 36 months. Vitamin A levels measured at ages of 15 and 24 months were positively associated with WAZ and WLZ at the same ages. On the other hand, the effect of aflatoxin on WAZ and WLZ decreased when zinc levels increased at ages of 15 months. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:59:42Z (GMT). No. of bitstreams: 1 ntu-105-R03849012-1.pdf: 2148955 bytes, checksum: d98964d4091949381797067fd5b133fe (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv 目錄 vi 圖目錄 viii 表目錄 ix 第壹章、 前言 1 第一節、 研究背景 1 第二節、 研究目的 3 第三節、 章節結構 3 第貳章、 文獻回顧 4 第一節、 人體測量指標及成長指標 4 第二節、 微量營養素: 維生素A 與鋅 5 第三節、 黃麴黴毒素 6 第四節、 腸道炎症指標 6 第五節、 結構方程模式 8 第六節、 潛在成長曲線模型 10 第七節、 結構方程模式中交互作用的分析 11 第參章、 材料與方法 19 第一節、 研究資料 19 第二節、 統計分析方法 22 第肆章、 研究結果 38 第一節、 描述性統計分析 38 第二節、 線性迴歸分析 41 第三節、 潛在成長曲線分析 42 第四節、 潛在交互作用分析 45 第伍章、 討論與結論 46 第一節、 結果比較 46 第二節、 模型比較 50 第三節、 研究限制與建議 51 第四節、 結論 52 參考文獻 71 附錄A 78 附錄B 80 | |
| dc.language.iso | zh-TW | |
| dc.subject | 結構方程模型 | zh_TW |
| dc.subject | 黃麴黴毒素 | zh_TW |
| dc.subject | 微量營養素 | zh_TW |
| dc.subject | 環境性腸病 | zh_TW |
| dc.subject | 潛在成長曲線分析 | zh_TW |
| dc.subject | 潛在交互作用分析 | zh_TW |
| dc.subject | 黃麴黴毒素 | zh_TW |
| dc.subject | 微量營養素 | zh_TW |
| dc.subject | 環境性腸病 | zh_TW |
| dc.subject | 結構方程模型 | zh_TW |
| dc.subject | 潛在成長曲線分析 | zh_TW |
| dc.subject | 潛在交互作用分析 | zh_TW |
| dc.subject | Latent growth curve analysis | en |
| dc.subject | Latent growth curve analysis | en |
| dc.subject | Latent interaction analysis | en |
| dc.subject | Micronutrients | en |
| dc.subject | Environmental enteropathy | en |
| dc.subject | Structural equation modeling | en |
| dc.subject | Aflatoxin | en |
| dc.subject | Latent interaction analysis | en |
| dc.subject | Aflatoxin | en |
| dc.subject | Micronutrients | en |
| dc.subject | Environmental enteropathy | en |
| dc.subject | Structural equation modeling | en |
| dc.title | 以結構方程模型探討黃麴黴毒素與微量營養素的交互作用對尼泊爾孩童成長影響 | zh_TW |
| dc.title | Using Structural Equation Modeling to Investigate Interaction Effect of Aflatoxin and Micronutrients on Child Growth in Nepal | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭柏秀,陳雅美 | |
| dc.subject.keyword | 黃麴黴毒素,微量營養素,環境性腸病,結構方程模型,潛在成長曲線分析,潛在交互作用分析, | zh_TW |
| dc.subject.keyword | Aflatoxin,Micronutrients,Environmental enteropathy,Structural equation modeling,Latent growth curve analysis,Latent interaction analysis, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201600840 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-12 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
