Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫療器材與醫學影像研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50809
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱遠(Yuan Luo)
dc.contributor.authorTing-Yu Hsiehen
dc.contributor.author謝婷羽zh_TW
dc.date.accessioned2021-06-15T12:59:39Z-
dc.date.available2023-08-30
dc.date.copyright2020-09-01
dc.date.issued2020
dc.date.submitted2020-08-13
dc.identifier.citation1. M. W. Davidson, and M. Abramowitz, 'Optical Microscopy,' (2002).
2. S. MJ, S. I, P. I, and B. MD., 'Fluorescence microscopy.,' Cold Spring Harbor Protocol 10 (2014).
3. P. Sarder, and A. Nehorai, 'Deconvolution methods for 3-D fluorescence microscopy images,' Ieee Signal Processing Magazine 23, 32-45 (2006).
4. Z. Li, Q. Zhang, S. W. Chou, Z. Newman, R. Turcotte, R. Natan, Q. Dai, E. Y. Isacoff, and N. Ji, 'Fast widefield imaging of neuronal structure and function with optical sectioning in vivo,' Sci Adv 6, eaaz3870 (2020).
5. S. W. Paddock, 'Principles and Practices of Laser Scanning Confocal Microscopy,' Molecular Biotechnology 16, 127-150 (2000).
6. R. M. Power, and J. Huisken, 'A guide to light-sheet fluorescence microscopy for multiscale imaging,' Nature Methods 14, 360-373 (2017).
7. O. E. Olarte, J. Andilla, E. J. Gualda, and P. Loza-Alvarez, 'Light-sheet microscopy: a tutorial,' Advances in Optics and Photonics 10, 111-179 (2018).
8. E. H. K. Stelzer, 'Light-sheet fluorescence microscopy for quantitative biology,' Nature Methods 12, 23-26 (2015).
9. Y. C. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. R. Bao, D. Colon-Ramos, and H. Shroff, 'Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,' Proceedings of the National Academy of Sciences of the United States of America 108, 17708-17713 (2011).
10. D. C. Shakes, J. C. Wu, P. L. Sadler, K. LaPrade, L. L. Moore, A. Noritake, and D. S. Chu, 'Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans,' Plos Genetics 5 (2009).
11. A. J. Evans, R. Chetty, B. A. Clarke, S. Croul, D. M. Ghazarian, T. R. Kiehl, B. P. Ordonez, S. Ilaalagan, and S. L. Asa, 'Primary frozen section diagnosis by robotic microscopy and virtual slide telepathology: the University Health Network experience,' Human Pathology 40, 1070-1081 (2009).
12. S. C. Johnson, P. S. Rabinovitch, and M. Kaeberlein, 'mTOR is a key modulator of ageing and age-related disease,' Nature 493, 338-345 (2013).
13. T. Kaletta, and M. O. Hengartner, 'Finding function in novel targets: C-elegans as a model organism,' Nature Reviews Drug Discovery 5, 387-398 (2006).
14. S. Brenner, 'The genetics of Caenorhabditis elegans.,' Genetics 77, 71-94 (1974).
15. M. Rieckher, I. Kyparissidis-Kokkinidis, A. Zacharopoulos, G. Kourmoulakis, N. Tavernarakis, J. Ripoll, and G. Zacharakis, 'A Customized Light Sheet Microscope to Measure Spatio-Temporal Protein Dynamics in Small Model Organisms,' Plos One 10 (2015).
16. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, 'Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,' Science 322, 1065-1069 (2008).
17. J.-H. Chien, 'Design and Develop Light Sheet Microscopy for Live Canenorhabditis elegans,' National Taiwan University Master Thesis (2018).
18. I. Albert-Smet, A. Marcos-Vidal, J. J. Vaquero, M. Desco, A. Munoz-Barrutia, and J. Ripoll, 'Applications of Light-Sheet Microscopy in Microdevices,' Frontiers in Neuroanatomy 13 (2019).
19. J. Tang, J. Ren, and K. Y. Han, 'Fluorescence imaging with tailored light,' Nanophotonics 8, 2111 - 2128 (2019).
20. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, 'Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,' Nature Methods 8, 417-U468 (2011).
21. F. O. Fahrbach, and A. Rohrbach, 'A line scanned light-sheet microscope with phase shaped self-reconstructing beams,' Optics Express 18, 24229-24244 (2010).
22. H. Jia, X. Yu, Y. Yang, X. Zhou, S. Yan, C. Liu, M. Lei, and B. Yao, 'Axial resolution enhancement of light-sheet microscopy by double scanning of Bessel beam and its complementary beam,' J Biophotonics 12, e201800094 (2019).
23. H. Siedentopf, and R. Zsigmondy, 'Uber sichtbarmachung und größenbestimmung ultramikoskopischer teilchen, mit besonderer anwendung auf goldrubingläser. Annalen der Physik,' 1, 1-39.
24. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, 'Optical sectioning deep inside live embryos by selective plane illumination microscopy,' Science 305, 1007-1009 (2004).
25. S. Preibisch, S. Saalfeld, J. Schindelin, and P. Tomancak, 'Software for bead-based registration of selective plane illumination microscopy data,' Nature Methods 7, 418-419 (2010).
26. A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, '3D single-molecule super-resolution microscopy with a tilted light sheet,' Nature Communications 9 (2018).
27. C. M. Chia, H. C. Wang, J. A. Yeh, D. Bhattacharya, and Y. Luo, 'Multiplexed holographic non-axial-scanning slit confocal fluorescence microscopy,' Optics Express 26, 14288-14294 (2018).
28. Y. Luo, P. J. Gelsinger, J. K. Barton, G. Barbastathis, and R. K. Kostuk, 'Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters,' Optics Letters 33, 566-568 (2008).
29. B. H. Chen, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, I. C. Lee, J. W. Chen, Y. H. Chen, Y. C. Lan, C. H. Kuan, and D. P. Tsai, 'GaN Metalens for Pixel-Level Full-Color Routing at Visible Light,' Nano Letters 17, 6345-6352 (2017).
30. S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. B. Xu, C. H. Kuan, T. Li, S. N. Zhu, and D. P. Tsai, 'Broadband achromatic optical metasurface devices,' Nature Communications 8 (2017).
31. S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T. T. Huang, J. H. Wang, R. M. Lin, C. H. Kuan, T. Li, Z. L. Wang, S. N. Zhu, and D. P. Tsai, 'A broadband achromatic metalens in the visible,' Nature Nanotechnology 13, 227-232 (2018).
32. J. Durnin, J. J. Miceli, and J. H. Eberly, 'DIFFRACTION-FREE BEAMS,' Physical Review Letters 58, 1499-1501 (1987).
33. K. Uehara, and H. Kikuchi, 'GENERATION OF NEARLY DIFFRACTION-FREE LASER-BEAMS,' Applied Physics B-Photophysics and Laser Chemistry 48, 125-129 (1989).
34. T. Meinert, and A. Rohrbach, 'Light-sheet microscopy with length-adaptive Bessel beams,' Biomedical Optics Express 10, 670-681 (2019).
35. T. Sabel, and M. C. Lensen, 'Volume Holography: Novel Materials, Method and Applications.,' (2017).
36. Y. Luo, S. B. Oh, and G. Barbastathis, 'Wavelength-coded multifocal microscopy,' Optics Letters 35, 781-783 (2010).
37. G. Barbastathis, M. Balberg, and D. J. Brady, 'Confocal microscopy with a volume holographic filter,' Optics Letters 24, 811-813 (1999).
38. Y. Luo, I. K. Zervantonakis, S. B. Oh, R. D. Kamm, and G. Barbastathis, 'Spectrally resolved multidepth fluorescence imaging,' Journal of Biomedical Optics 16 (2011).
39. P. J. Gelsinger-Austin, Y. A. Luo, J. M. Watson, R. K. Kostuk, G. Barbastathis, J. K. Barton, and J. M. Castro, 'Optical design for a spatial-spectral volume holographic imaging system,' Optical Engineering 49 (2010).
40. P. H. Wang, V. R. Singh, J. M. Wong, K. B. Sung, and Y. Luo, 'Non-axial-scanning multifocal confocal microscopy with multiplexed volume holographic gratings,' Optics Letters 42, 346-349 (2017).
41. Y. Luo, J. M. Russo, R. K. Kostuk, and G. Barbastathis, 'Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters,' Optics Letters 35, 1269-1271 (2010).
42. TING-YU HSIEH, SUNIL VYAS, JUI-CHING WU, and Y. LUO, 'Volume holographic optical element for light sheet fluorescence microscopy,' Optics Letters (2020).
43. R. Tomer, M. Lovett-Barron, I. Kauvar, A. Andalman, V. M. Burns, S. Sankaran, L. Grosenick, M. Broxton, S. Yang, and K. Deisseroth, 'SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function,' Cell 163, 1796-1806 (2015).
44. M. W. Adams, L. A. F., S. E. Dunn, M. S. Joens, and J. Fitzpatrick, 'Light Sheet Fluorescence Microscopy (LSFM),' Current protocols in cytometry 71 (2015).
45. X. K. Shu, N. C. Shaner, C. A. Yarbrough, R. Y. Tsien, and S. J. Remington, 'Novel chromophores and buried charges control color in mFruits,' Biochemistry 45, 9639-9647 (2006).
46. Yuan Luo, Ming Lun Tseng, Sunil Vyas, Ting-Yu Hsieh, Jui-Ching Wu, Shang-Yang Chen, Hsiao-Fang Peng, Vin-Cent Su, Tzu-Ting Huang, Hsin Yu Kuo, Cheng Hung Chu, Jia-Wern Chen, Chieh-Hsiung Kuan, Xu Shi, Hiroaki Misawa, and D. P. Tsai, 'Metalens for lightsheet fluorescence microscopy,' submitted (2019).
47. T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cizmar, F. J. Gunn-Moore, and K. Dholakia, 'Light-sheet microscopy using an Airy beam,' Nature Methods 11, 541-544 (2014).
48. D. McGloin, and K. Dholakia, 'Bessel beams: diffraction in a new light,' Contemporary Physics 46, 15-28 (2005).
49. C. A. McQueen, J. Arlt, and K. Dholakia, 'An experiment to study a 'nondiffracting' light beam,' American Journal of Physics 67, 912-915 (1999).
50. A. Thaning, Z. Jaroszewicz, and A. T. Friberg, 'Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons,' Applied Optics 42, 9-17 (2003).
51. Z. Bin, and L. Zhu, 'Diffraction property of an axicon in oblique illumination,' Applied Optics 37, 2563-2568 (1998).
52. V. Belyi, A. Forbes, N. Kazak, N. Khilo, and P. Ropot, 'Bessel-like beams with z-dependent cone angles,' Optics Express 18, 1966-1973 (2010).
53. C. Rosales-Guzmán, and A. Forbes, 'How to Shape Light with Spatial Light Modulators,' SPIE (2017).
54. R. L. Nowack, 'A tale of two beams: an elementary overview of Gaussian beams and Bessel beams,' Studia Geophysica Et Geodaetica 56, 355-372 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50809-
dc.description.abstract為了實現對活體生物樣品的卓越三維成像,需要精細的光學切片、高速圖像採集和低光損傷。紙片光螢光顯微鏡(LSFM)滿足了所有條件,因此成為在體內觀察模型生物發育過程的主要技術。樣品架的特殊要求以及紙片光螢光顯微鏡的照明和檢測臂的正交結構,造成設計輕便型系統時產生了限制。
本文提出了兩種輕便型LSFM系統的新設計方法,並進行了實驗驗證。在第一種方法中,設計了體積全像紙片光螢光顯微鏡(VH-LSFM)。為了簡化設置而不會降低其成像性能,使用了光聚合物的體積全息光柵(VHG)來代替照明臂的笨重的圓柱透鏡和物鏡。體積全息光柵具有多種優勢,例如單一繞射、寬頻帶操作、緊湊的尺寸和設計靈活性,這使得體積全像術很適合與商用顯微鏡做結合。在第二種方法中,設計了微製成紙片光片螢光顯微鏡(Metalens-LSFM)。使用超影透鏡來代替LSFM的整個照明臂。超影透鏡的微型尺寸(數百奈米)有助於大大降低整個LSFM的複雜性。這兩個輕便型LSFM系統已經過實驗表徵,並被證明具有良好的光學切片能力。
為了證明我們的系統對生物醫學的成像能力,我們對秀麗隱桿線蟲進行了體內成像。由於秀麗隱桿線蟲是研究生物學效應的重要生物,因此各種光學顯微鏡技術常以此為目的。然而,使用LSFM系統觀察整個活的秀麗隱桿線蟲的研究很少。使用我們的系統,可以即時觀察線蟲內部結構的高對比度圖像並可以達到細胞等級的分辨率。本文中討論的概念可以為生物醫學應用設計新的光片顯微鏡中找到重要的應用。
zh_TW
dc.description.abstractTo achieve superior three-dimensional imaging of living biological samples, fine optical sectioning, high-speed image acquisition, and low photo-damage are required. Light-sheet fluorescence microscopy (LSFM) fulfills all these conditions and thus becomes a leading technique for in-vivo observations of developmental processes in model organisms. The specific requirements on the sample holder and the orthogonal structure of illumination and detection arms of LSFM imposes restrictions in designing compact systems.
In this thesis, two new design methods for compact LSFM systems are proposed and experimentally demonstrated. In the first approach, a volume holographic light-sheet fluorescence microscope (VH-LSFM) is designed. To simplify the setup without degrading its imaging performance, a photopolymer-based volume holographic grating (VHG) is used to replace the bulky cylindrical lens and an objective lens of the illumination arm. VHG offers multiple advantages such as single diffraction order, broadband operation, compact size, and design flexibility which make VHG suitable for integration with the commercial microscope. In the second approach, a metalens light sheet fluorescence microscope (Metalens-LSFM) is designed. A metalens was designed to replace the entire illumination arm of the LSFM. The miniature size of the metalens (a few hundreds of nanometers) helps in drastically reducing complexity of the entire LSFM. These two compact LSFM systems have been experimentally characterized and demonstrated to have good optical sectioning capability.
To demonstrate the imaging capability of our system for biomedical imaging, we perform in-vivo imaging of C. elegans, which is an important biological organism to study biological effect. Various optical microscopy techniques have been used for this purpose; however, there are only few reports on the use LSFM system to observe entire live C. elegans. With our systems, high contrast images of internal structures of C. elegans up to cellular resolution can be observed in real-time. Concepts discussed in this work may find important applications in designing new light-sheet microscopes for biomedical applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:59:39Z (GMT). No. of bitstreams: 1
U0001-1008202020014700.pdf: 6614948 bytes, checksum: e7f9e832bf7f649ca623d8189b890641 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsTable of Contents
致謝 i
中文摘要 ii
ABSTRACT iii
Table of Contents v
LIST OF FIGURES viii
LIST OF TABLES xiii
LIST OF ABBREVIATIONS and SYMBOLS xiv
Chapter 1 Introduction - 1 -
1.1 Optical Fluorescence Microscopy - 1 -
1.2 Light Sheet Fluorescence Microscopy (LSFM) - 2 -
1.3 Characteristic parameters of LSFM - 4 -
1.3.1 Parameters of illumination arm in LSFM - 4 -
1.3.2 Parameters of detection arm in LSFM - 5 -
1.4 Sample selection of LSFM: C. elegans - 7 -
1.5 Motivation and purpose - 8 -
1.6 Literature reviews - 11 -
1.7 Overview of the thesis - 13 -
Chapter 2 Volume Holographic Light Sheet Fluorescence Microscopy (VH-LSFM) - 15 -
2.1 Volume Holographic Gratings (VHGs) - 15 -
2.1.1 Material and fabrication of VHGs - 15 -
2.1.2 Recording light sheet beam on VHGs - 16 -
2.2 Light sheet from VHG - 17 -
2.2.1 Reconstruction of VH based light sheet wavefront - 17 -
2.2.2 Comparison of light sheet beam using VHG and conventional cylindrical lens - 18 -
2.2.3 Broadband property of VHG based light sheet illumination - 19 -
2.3 Experimental setup of VH-LSFM - 21 -
2.3.1 Sample holder design for LSFM - 22 -
2.4 Imaging performance of VH-LSFM - 23 -
2.4.1 Light sheet thickness measurement using 45-degree mirror - 23 -
2.4.2 Measurement of optical sectioning capability using fluorescent beads - 25 -
2.5 In-vivo imaging of C. elegans using VH-LSFM - 27 -
2.5.1 Fine structures of oocytes in live C. elegans - 29 -
2.5.2 Fine structures of embryos in live C. elegans - 31 -
2.6 Comparison results of VH-LSFM with bright field microscopy - 32 -
2.7 Comparison results of VH-LSFM with epi-fluorescence microscopy - 34 -
2.8 Summary - 35 -
Chapter 3 Metalens for Light Sheet Fluorescence Microscopy (Metalens-LSFM) - 39 -
3.1 Materials and Methods for fabrication of metalens for light sheet - 39 -
3.2 Light sheet from metalens - 42 -
3.2.1 Beam profile of metalens light sheet - 42 -
3.2.2 Broadband property of metalens - 42 -
3.3 Experimental setup of Metalens-LSFM - 43 -
3.4 Imaging performance of Metalens-LSFM - 45 -
3.4.1 Measurement of optical sectioning capability using fluorescent beads - 45 -
3.5 In-vivo imaging of C. elegans using Metalens-LSFM - 48 -
3.5.1 Fine structures of oocytes in live C. elegans - 49 -
3.5.2 Fine structures of embryos in live C. elegans - 49 -
3.6 Comparison results of Metalens-LSFM with bright field microscopy - 51 -
3.7 Comparison results of Metalens-LSFM with epi-fluorescence microscopy - 54 -
3.8 Summary - 54 -
Chapter 4 Bessel beam for Light Sheet Fluorescence Microscopy (Bessel-LSFM) - 60 -
4.1 Bessel beam - 60 -
4.1.1 Diffraction-free properties of Bessel beam - 60 -
4.1.2 Generation methods of Bessel beam - 63 -
4.1.3 Generation of Bessel beam using spatial light modulator and digital axicon - 65 -
4.2 Simulation results - 72 -
4.3 Experimental setup - 75 -
4.3.1 Experiential results - 76 -
4.3.2 Variation of axicon angle on beam profile - 80 -
4.3.3 Beam profile at different propagation plane - 82 -
4.4 Light sheet from Bessel - 83 -
4.4.1 Optical sectioning capability of Bessel-LSFM with different axicon angle - 83 -
4.4.2 Optical sectioning images of standard fluorescent beads - 84 -
4.5 In-vivo imaging of C. elegans using Bessel-LSFM - 85 -
4.5.1 Fine structures of oocytes in live C. elegans - 86 -
4.5.2 Fine structures of embryos in live C. elegans - 86 -
4.6 Comparison results of Bessel-LSFM with bright field microscopy - 87 -
4.7 Summary - 88 -
Chapter 5 Conclusions and future directions - 90 -
5.1 Conclusions - 90 -
5.2 Future directions - 92 -
5.2.1 Combination of VHG or metasurface with beam shapes - 92 -
5.2.2 Using image processing: deconvolution - 93 -
5.2.3 High NA detection objective lens and other sample holders for cells - 95 -
Reference - 97 -
dc.language.isoen
dc.title衍射光學元件用於輕便光切片顯微鏡術設計zh_TW
dc.titleDiffractive Optics Design Strategies for Compact Light Sheet Fluorescence Microscopyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.author-orcid0000-0003-3294-288X
dc.contributor.advisor-orcid駱遠(0000-0001-9776-7897)
dc.contributor.oralexamcommittee蔡瑞章(JUI-CHANG TSAI),葉哲良(Jer-Liang Andrew Yeh),吳瑞菁(JUI-CHING WU)
dc.contributor.oralexamcommittee-orcid蔡瑞章(0000-0003-2723-6841),吳瑞菁(0000-0002-3880-9652)
dc.subject.keyword光學切片顯微鏡,紙光片螢光顯微鏡,選擇性平面照明顯微鏡,體全息光柵,奈米光子超表面,秀麗隱桿線蟲,貝塞爾光束,zh_TW
dc.subject.keywordOptical-sectioning microscopy,light sheet fluorescent microscopy,selective plane illumination microscopy,volume holographic grating,nanophotonics metasurface,C. elegans,Bessel beam,en
dc.relation.page100
dc.identifier.doi10.6342/NTU202002867
dc.rights.note有償授權
dc.date.accepted2020-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫療器材與醫學影像研究所zh_TW
顯示於系所單位:醫療器材與醫學影像研究所

文件中的檔案:
檔案 大小格式 
U0001-1008202020014700.pdf
  目前未授權公開取用
6.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved