請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50798完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯淳涵(Chun-Han Ko) | |
| dc.contributor.author | Hsiao-En Ko | en |
| dc.contributor.author | 柯筱恩 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:59:01Z | - |
| dc.date.available | 2025-08-12 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-12 | |
| dc.identifier.citation | Houghton, J. T., Meira Filho, L. G., Bruce, J. P., Lee, H., Callander, B. A., Haites, E. F. (Eds.). (1995). Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC 1992 IS92 emission scenarios. Cambridge University Press O'neill, B. C. (2000). The jury is still out on global warming potentials. Climatic Change, 44(4), 427. Smith, S. J., Wigley, M. L. (2000). Global warming potentials: 1. Climatic implications of emissions reductions. Climatic Change, 44(4), 445-457. Fuglestvedt, J. S., Berntsen, T. K., Godal, O., Sausen, R., Shine, K. P., Skodvin, T. (2003). Metrics of climate change: Assessing radiative forcing and emission indices. Climatic Change, 58(3), 267-331. Luz, F. C., Volpe, M., Fiori, L., Manni, A., Cordiner, S., Mulone, V., Rocco, V. (2018). Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process. Bioresource technology, 256, 102-109. Yan, J. Y., Chou, S. K., Desideri, U., Lee, D. J. (2015). Transition of clean energy systems and technologies towards a sustainable future. Fifteenth International Conference on Atmospheric Electricity (ICAE 2014), Norman, Oklahoma, USA, 15-20 June 2014. Applied Energy, 160, 619-1006. Calise, F., Figaj, R. D., Massarotti, N., Mauro, A., Vanoli, L. (2017). Polygeneration system based on PEMFC, CPVT and electrolyzer: Dynamic simulation and energetic and economic analysis. Applied energy, 192, 530-542. Cordiner, S., De Simone, G., Mulone, V. (2012). Experimental–numerical design of a biomass bubbling fluidized bed gasifier for paper sludge energy recovery. Applied energy, 97, 532-542. Miliotti, E., Casini, D., Lotti, G., Bettucci, L., Pennazzi, S., Rizzo, A. M., Chiaramonti, D. (2017). Valorization of solid residues from anaerobic digestion through thermal and hydrothermal carbonization process. In 25th European Biomass Conference and Exhibition, Stockholm (pp. 1063-1069). Volpe, M., Panno, D., Volpe, R., Messineo, A. (2015a). Upgrade of citrus waste as a biofuel via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 115, 66-76. Volpe, R., Messineo, A., Millan, M., Volpe, M., Kandiyoti, R. (2015b). Assessment of olive wastes as energy source: pyrolysis, torrefaction and the key role of H loss in thermal breakdown. Energy, 82, 119-127. Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E. C., Weiss-Hortala, E., Fiori, L. (2016). Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste management, 47, 114-121. Lane, A. G. (1983). Anaerobic digestion of spent coffee grounds. Biomass, 3(4), 247-268. Saxena, R. C., Adhikari, D. K., Goyal, H. B. (2009). Biomass-based energy fuel through biochemical routes: A review. Renewable and sustainable energy reviews, 13(1), 167-178. Streitwieser, D. A. (2017). Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness. Bioresource technology, 241, 985-992. Wang, S., Ruan, Y., Zhou, W., Li, Z., Wu, J., Liu, D. (2018). Net energy analysis of small-scale biogas self-supply anaerobic digestion system operated at psychrophilic to thermophilic conditions. Journal of Cleaner Production, 174, 226-236. Rowell, R. M. (Ed.). (2012). Handbook of wood chemistry and wood composites. CRC press. Klemm, D., Heublein, B., Fink, H. P., Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte chemie international edition, 44(22), 3358-3393. Moon, R. J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J. (2011). Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 40(7), 3941-3994. Nishiyama, Y. (2009). Structure and properties of the cellulose microfibril. Journal of wood science, 55(4), 241-249. Rajinipriya, M., Nagalakshmaiah, M., Robert, M., Elkoun, S. (2018). Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustainable Chemistry Engineering, 6(3), 2807-2828. Dumitriu, S. (Ed.). (2004). Polysaccharides: structural diversity and functional versatility. CRC press. Brunner, G. (2014). Hydrothermal and supercritical water processes. Elsevier. Hendriks, A. T. W. M., Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology, 100(1), 10-18. Scheller, H. V., Ulvskov, P. (2010). Hemicelluloses. Annual review of plant biology, 61. Machmudah, S., Kanda, H., Goto, M. (2017). Hydrolysis of Biopolymers in Near-Critical and Subcritical Water. In Water Extraction of Bioactive Compounds (pp. 69-107). Elsevier. McDonald, A.G., Donaldson, L.A., (2001). Wood, Constituents of. Encyclopedia of materials. Science and technology, 1(11), 9612-9615. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology, 96(6), 673-686. Tomás-Pejó, E., Alvira, P., Ballesteros, M., Negro, M. J. (2011). Pretreatment technologies for lignocellulose-to-bioethanol conversion. In Biofuels (pp. 149-176). Academic press. Banerjee, S., Mudliar, S., Sen, R., Giri, B., Satpute, D., Chakrabarti, T., Pandey, R. A. (2010). Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 4(1), 77-93. Yang, B., Wyman, C. E. (2008). Pretreatment: the key to unlocking low‐cost cellulosic ethanol. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 2(1), 26-40. Mason, W. H. (1926). U.S. Patent No. 1,578,609. Washington, DC: U.S. Patent and Trademark Office. Overend, R. P., Chornet, E. (1988). A unified treatment for liquefaction. In Research in Thermochemical Biomass Conversion (pp. 411-428). Springer, Dordrecht. Cherian, B. M., Leão, A. L., De Souza, S. F., Thomas, S., Pothan, L. A., Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate polymers, 81(3), 720-725. Overend, R. P., Chornet, E. (1987). Fractionation of lignocellulosics by steam-aqueous pretreatments. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 321(1561), 523-536. Avellar, B. K., Glasser, W. G. (1998). Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass and Bioenergy, 14(3), 205-218. Oliva, J. M., Sáez, F., Ballesteros, I., González, A., Negro, M. J., Manzanares, P., Ballesteros, M. (2003). Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. In Biotechnology for fuels and chemicals (pp. 141-153). Humana Press, Totowa, NJ. Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I. (2004). Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochemistry, 39(12), 1843-1848. Cara, C., Ruiz, E., Ballesteros, I., Negro, M. J., Castro, E. (2006). Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 41(2), 423-429. Yang, M., Li, W., Liu, B., Li, Q., Xing, J. (2010). High-concentration sugars production from corn stover based on combined pretreatments and fed-batch process. Bioresource technology, 101(13), 4884-4888. Ballesteros, I., Negro, M. J., Oliva, J. M., Cabañas, A., Manzanares, P., Ballesteros, M. (2006). Ethanol production from steam-explosion pretreated wheat straw. In Twenty-seventh symposium on biotechnology for fuels and chemicals (pp. 496-508). Humana Press. Martı́n, C., Galbe, M., Wahlbom, C. F., Hahn-Hägerdal, B., Jönsson, L. J. (2002). Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microbial technology, 31(3), 274-282. Viola, E., Cardinale, M., Santarcangelo, R., Villone, A., Zimbardi, F. (2008). Ethanol from eel grass via steam explosion and enzymatic hydrolysis. Biomass and bioenergy, 32(7), 613-618. Barta, Z., Oliva, J. M., Ballesteros, I., Dienes, D., Ballesteros, M., Réczey, K. (2010). Refining hemp hurds into fermentable sugars or ethanol. Chemical and biochemical engineering quarterly, 24(3), 331-339. Zaldivar, J., Nielsen, J., Olsson, L. (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Applied microbiology and biotechnology, 56(1-2), 17-34. Brownell, H. H., Yu, E. K. C., Saddler, J. N. (1986). Steam‐explosion pretreatment of wood: Effect of chip size, acid, moisture content and pressure drop. Biotechnology and bioengineering, 28(6), 792-801. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., Hahn-Hägerdal, B. (1998). Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Applied Biochemistry and Biotechnology, 70(1), 3. Palmqvist, E., Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource technology, 74(1), 25-33. Kelleher, B. P., Leahy, J. J., Henihan, A. M., O'dwyer, T. F., Sutton, D., Leahy, M. J. (2002). Advances in poultry litter disposal technology–a review. Bioresource technology, 83(1), 27-36. Parkin, G. F., Speece, R. E., Yang, C. H. J., Kocher, W. M. (1983). Response of methane fermentation systems to industrial toxicants. Journal (Water Pollution Control Federation), 44-53. Ghosh, S., Pohland, F. G. (1974). Kinetics of substrate assimilation and product formation in anaerobic digestion. Journal (Water Pollution Control Federation), 748-759. Vanstarkenburg, W. (1997). Anaerobic treatment of wastewater: state of the art. Microbiology, 66(5), 588-596. Lo, K. V., Liao, P. H., March, A. C. (1985). Thermophilic anaerobic digestion of screened dairy manure. Biomass, 6(4), 301-315. Dupla, M., Conte, T., Bouvier, J. C., Bernet, N., Steyer, J. P. (2004). Dynamic evaluation of a fixed bed anaerobic digestion process in response to organic overloads and toxicant shock loads. Water Science and Technology, 49(1), 61-68. Kaspar, H. F., Wuhrmann, K. (1978). Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Applied and Environmental Microbiology, 36(1), 1-7. Gujer, W., Zehnder, A. J. (1983). Conversion processes in anaerobic digestion. Water science and technology, 15(8-9), 127-167.Rasi, S., Veijanen, A., Rintala, J. (2007). Trace compounds of biogas from different bioga Pohland, F. G., Ghosh, S. (1971). Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environmental letters, 1(4), 255-266. Demirel, B., Yenigün, O. (2002). Two‐phase anaerobic digestion processes: a review. Journal of Chemical Technology Biotechnology: International Research in Process, Environmental Clean Technology, 77(7), 743-755. Kroeker, E. J., Schulte, D. D., Sparling, A. B., Lapp, H. M. (1979). Anaerobic treatment process stability. Journal (Water Pollution Control Federation), 718-727. Rasi, S., Veijanen, A., Rintala, J. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32(8), 1375-1380. Ghosh, S. (1997, May). Anaerobic digestion for renewable energy and environmental restoration. In The 8th International Conference on Anaerobic Digestion, Sendai International Center, Sendai, Japan, Ministry of Education Japan. Ibrahim, M. M., Agblevor, F. A., El-Zawawy, W. K. (2010). Isolation and characterization of cellulose and lignin from steam-exploded lignocellulosic biomass. BioResources, 5(1), 397-418. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428. König, J., Grasser, R., Pikor, H., Vogel, K. (2002). Determination of xylanase, β-glucanase, and cellulase activity. Analytical and Bioanalytical Chemistry, 374(1), 80-87. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50798 | - |
| dc.description.abstract | 生質能源(Biomass energy)的是應用生質物 (特別是植物),從植物中取得的有機碳,將其轉換成可利用的主要能源,如生質氫氣(Bio-hydrogen)與生質甲烷 (Bio-gas),以替代石油和天然氣。 使用生質能源和石化能源不同的地方在於,以厭氧醱酵甲烷來說,是由太陽行光合作用將碳儲存於植物體中,因此當我們將其利用產生甲烷燃燒,可以視為一個封閉式的碳循環系統,並不會額外製造更多的溫室氣體。台灣日照時間長、氣候溫熱潮溼、地處於熱帶與亞熱帶交界處、高山多地形起伏大,地形種類多,因此利於多樣化的木質纖維作物及微生物生長。養豬場是許多人避之唯恐不及的擾鄰建築,糞尿污染周遭環境,河川、土地。若我們能將這兩者結合,將廢棄木質纖維及豬糞尿結合應用於升值甲烷的開發利用,不只能解決豬糞尿汙染問題,還可以減少石化能源的使用,減少更多二氧化碳的產生。 本研究使用不同的生質物進行厭氧醱酵,及另外添加來自紙廠的厭氧汙泥餅進行厭氧醱酵。總甲烷產氣量而言,已單純使用豬場菌產氣量較好;但就每克使用固形分所產生的甲烷的使用效率來看,可發現大多以添加紙廠菌的結果較好,這可由後續的結晶度、剩餘纖維素含量、次世代定序 (next generation sequencing, NGS) 分析解釋。 由結晶度、剩餘纖維素含量、NGS測定,可以發現單純添加豬場菌的厭氧醱酵系統其分解糖產生有機酸的菌群較多,因此可發現纖維素降解較多且結晶度也下降較多,使得總甲烷產氣量較高。就添加紙廠菌厭氧醱酵系統而言,以嗜乙酸甲烷菌為主要菌群,使得分解木質纖維素菌群較少。因此和未添加紙廠菌相比較可以發現,降解木質纖維素的能力較差,剩餘纖維素含量較高且剩餘結晶度也較高。然而因嗜乙酸甲烷菌較多,一但產生有機酸便可迅速被甲烷菌利用,使得每克使用固形分所產生的甲烷的使用效率較好。 | zh_TW |
| dc.description.abstract | Biomass energy is generated from the conversion of organic carbon, obtained from organisms (especially plants) into primary energy sources. The difference between using biomass and petrochemical energy is the carbon source. Carbon dioxide emitted from burning biomass is fixed and stored in plants through photosynthesis. The combustion of bioenergy sources is considered a closed carbon circulation system and does not produce extra greenhouse gases carbon dioxide. In this study, various substrates were used for anaerobic digestion, some of which involved anaerobic sludge cake from paper plants, and differences were compared. Methane accumulation through anaerobic digestion without added anaerobic sludge cake was found to be favorable. However, in terms of efficiency, the methane yield per gram of volatile solid content (VS) used through anaerobic digestion with anaerobic sludge cake was most favorable. These results were investigated further by assessing the crystallinity and cellulose residue and through next-generation sequencing (NGS). In NGS analysis, more bacteria could convert sugar into organic acids through anaerobic digestion without added anaerobic sludge cake. Therefore, the cellulose content and crystallinity were degraded, and methane accumulation increased. The dominant bacteria of the anaerobic digestion system with added anaerobic sludge cake were Methanosaeta spp. Consequently, the cellulose degradation potential decreased, the residual cellulose content and crystallinity are all higher, and methane accumulation decreased. However, Methanosaeta spp. are the dominant bacteria to metabolize organic acids upon production. This increases the methane yield per gram of VS used for anaerobic digestion with added anaerobic sludge cake. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:59:01Z (GMT). No. of bitstreams: 1 U0001-1008202020284300.pdf: 3585292 bytes, checksum: 6dfae6c025e044f90838c1346b2e188d (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 I 謝誌 II 摘要 III Abstract IV Figure index IX Table index XI List of abbreviation XII Chapter 1 Introduction 1 Chapter 2 Literature review 4 2.1 Lignocellulose 4 2.1.1 Cellulose 4 2.1.2 Hemicellulose 6 2.1.3. Lignin 7 2.2 Pretreatment 10 2.2.1 Introduction to pretreatment 10 2.2.2 Steam explosion pretreatment 13 2.3 AD 16 2.3.1 Introduction to AD 16 Chapter 3 Materials and methods 21 3.1 Study design 21 3.2 Materials 23 3.2.1 Lignocellulose materials 23 3.2.2 Anaerobic bacteria for fermentation process 29 3.2.3 Primer that are used in bacteria analysis. 29 3.3 Equipment 29 3.3.1 Reactor equipment setting 29 3.3.2 Gas measurement equipment 34 3.4 Methods 35 3.4.1 Chemical compositions 35 3.4.2 pH testing 35 3.4.3 Total solid content and VS testing 35 3.4.4 Analysis of methane content 35 3.4.5 Reducing sugar testing 36 3.4.6 Enzyme activity 37 3.4.7 Determination of residual cellulose levels 37 3.4.8 Analysis of crystallinity (X-ray diffraction) 38 3.4.9 Sample pretreatment and DNA extraction 39 3.4.10 NGS analysis 39 Chapter 4 Results and discussion 41 4.1 Chemical composition of different lignocellulosic materials 41 4.1.1 Moisture content 41 4.1.2 Volatile solid content 41 4.1.3 Cellulose content 42 4.1.4 Alcohol benzene extract content. 43 4.2 Optimal feed and F/M ratio in batch experiments for AD of BEK, UEK, and Avicel 46 4.2.1 Biomethane potential of the feed and microorganism F/M ratio of BEK, UEK, and Avicel 46 4.2.2 Reducing sugar content before and after fermentation for determing the F/M ratio of BEK, UEK, and Avicel 49 4.3 Different lignocellulosic materials in AD 51 4.3.1 Batch AD 51 4.3.2 Methane production using different lignocellulosic material 51 4.3.3 Analysis of reducing sugar from different substrates during batch AD 57 4.3.4 Analysis of enzyme activity 62 4.3.5 Testing of residual cellulose content of different substrates in a batch AD system 65 4.3.6 Crystallinity of different substrates in the batch AD system 69 4.3.7 NGS analysis of different substrates in a batch AD system 72 4.4 Different lignocellulosic materials with the addition of ASCP in AD 77 4.4.1 Batch AD with the addition of ASCP 77 4.4.2 Methane content upon addition of ASCP during batch AD 77 4.4.3 Reducing sugar content of different substrates with the addition of ASCP before and after AD 81 4.4.4 Enzyme activity for different substrates with the addition of ASCP 85 4.4.5 Residual cellulose content of AD with the addition of ASCP 87 4.4.6 Crystallinity of the anaerobic system with the addition of ASCP 89 4.4.7 NGS analysis of batch AD with the addition of ASCP 92 Chapter 5 Conclusion 98 Chapter 6 References 101 | |
| dc.language.iso | en | |
| dc.subject | 農業廢棄物 | zh_TW |
| dc.subject | 厭氧醱酵 | zh_TW |
| dc.subject | 生質甲烷 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 結晶度 | zh_TW |
| dc.subject | 厭氧醱酵 | zh_TW |
| dc.subject | 農業廢棄物 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 結晶度 | zh_TW |
| dc.subject | 生質甲烷 | zh_TW |
| dc.subject | Next-generation sequencing | en |
| dc.subject | Next-generation sequencing | en |
| dc.subject | Crystallinity | en |
| dc.subject | Biomethane | en |
| dc.subject | Anaerobic digestion | en |
| dc.subject | Agricultural waste | en |
| dc.subject | Agricultural waste | en |
| dc.subject | Anaerobic digestion | en |
| dc.subject | Biomethane | en |
| dc.subject | Crystallinity | en |
| dc.title | 木質纖維素特性及菌種組成對厭氧醱酵的影響 | zh_TW |
| dc.title | Impact of lignocellulosic material characteristics and microbial community composition on anaerobic digestion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周楚洋(Chu-Yang Chou),劉安琪(An-Chi Liu),張芳志(Fang-Chih Chang) | |
| dc.subject.keyword | 農業廢棄物,厭氧醱酵,生質甲烷,結晶度,次世代定序, | zh_TW |
| dc.subject.keyword | Agricultural waste,Anaerobic digestion,Biomethane,Crystallinity,Next-generation sequencing, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU202002869 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-12 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202020284300.pdf 未授權公開取用 | 3.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
