請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50784完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇(Hung-Yu Wei) | |
| dc.contributor.author | Kai-Cheng Hsu | en |
| dc.contributor.author | 許凱程 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:58:12Z | - |
| dc.date.available | 2017-07-26 | |
| dc.date.copyright | 2016-07-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-13 | |
| dc.identifier.citation | [1] EnGenius Inc., ERB9250. http://www.engeniustech.com.
[2] Ettus Inc., Universal Software Radio Peripheral. http://ettus.com. [3] Jackson Labs Technologies Inc., Fury GPSDO. http://www.jacksonlabs.com/index.php/products/fury. [4] TP-LINK Inc., TL-WPA4220KIT. http://www.tp-link.us. [5] Woken Inc. Circulator. http://www.woken.com.tw. [6] E. Aryafar, N. Anand, T. Salonidis, and E. W. Knightly. Design and Experimental Evaluation of Multi-User Beamforming in Wireless LANs. In ACM MobiCom, 2010. [7] E. Aryafar and A. Keshavarz-Haddad. FD2: A Directional Full Duplex Communication System for Indoor Wireless Networks. In IEEE INFOCOM, April 2015. [8] E. Aryafar, M. Khojastepour, K. Sundaresan, S. Rangarajan, and M. Chiang. MIDU: Enabling MIMO Full Duplex. In ACM MOBICOM, 2012. [9] E. Aryafar, M. A. Khojastepour, K. Sundaresan, S. Rangarajan, and M. Chiang. MIDU: Enabling MIMO Full Duplex. In ACM MobiCom, 2012. [10] J. Bai and A. Sabharwal. Distributed Full-duplex via Wireless Side-Channels: Bounds and Protocols. IEEE Transactions on Wireless Communications, 12(8):4162--4173, Aug. 2013. [11] H. P. Benson. Global Optimization Algorithm for the Nonlinear Sum of Ratios Problem. Journal of Optimization Theory and Applications, 112(1):1--29, 2002. [12] D. Bharadia and S. Katti. FastForward: Fast and Constructive Full Duplex Relays. In ACM SIGCOMM, 2014. [13] D. Bharadia and S. Katti. Full Duplex MIMO Radios. In USENIX NSDI, 2014. [14] D. Bharadia, E. McMilin, and S. Katti. Full Duplex Radios. In ACM SIGCOMM, 2013. [15] D. Bharadia, E. McMilin, and S. Katti. Full Duplex Radios. In ACM SIGCOMM, 2013. [16] D. Chen and J. N. Laneman. Modulation and Demodulation for Cooperative Diversity in Wireless Systems. IEEE Transactions on Wireless Communications, 5(7):1785--1794, Jul. 2006. [17] W. Cheng, X. Zhang, and H. Zhang. Optimal Dynamic Power Control for Full-Duplex Bidirectional-Channel based Wireless Networks. In IEEE INFOCOM, April 2013. [18] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving Single Channel, Full Duplex Wireless Communication. In ACM MobiCom, 2010. [19] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving Single Channel, Full Duplex Wireless Communication. In ACM MOBICOM, 2010. [20] W. Choi, H. Lim, and A. Sabharwal. Power-Controlled Medium Access Control Protocol for Full-Duplex WiFi Networks. IEEE Transactions on Wireless Communications, 14(7), July 2015. [21] Y.-S. Choi and H. Shirani-Mehr. Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance. IEEE Transactions on Wireless Communications, 12(12):5992--6010, Oct. 2013. [22] T. M. Cover and A. A. E. Gamal. Capacity Theorems for the Relay Channel. IEEE Transactions on Information Theory, 25(5):572--584, Sept. 1979. [23] T. M. Cover and A. A. E. Gamal. Capacity Theorems for the Relay Channel. IEEE Transactions on Information Theory, 25(5):572--584, Sept. 1979. [24] H. Cui, M. Ma, L. Song, and B. Jiao. Relay Selection for Two-Way Full Duplex Relay Networks With Amplify-and-Forward Protocol. IEEE Transactions on Wireless Communications, 13(7):3768--3777, July 2014. [25] B. Day, A. Margetts, D. Bliss, and P. Schniter. Full-Duplex Bidirectional MIMO: Achievable Rates Under Limited Dynamic Range. IEEE Transactions on Signal Processing, 60(7):3702--3713, July 2012. [26] Y. Ding, J.-K. Zhang, and K. M. Wong. The Amplify-and-Forward Half-Duplex Cooperative System: Pairwise Error Probability and Precoder Design. IEEE Transactions on Signal Processing, 55(2):605--617, Feb. 2007. [27] W. Dong, S. Rallapalli, R. Jana, L. Qiu, K. K. Ramakrishnan, L. Razoumov, Y. Zhang, and T. W. Cho. iDEAL: Incentivized Dynamic Cellular Offloading via Auctions. IEEE/ACM Transactions on Networking, 22(4):1271--1284, August 2014. [28] M. Duarte and A. Sabharwal. Full-Duplex Wireless Communications using Off-the-Shelf Radios: Feasibility and First Results. In Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2010. [29] M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. Ramakrishnan, C. Rice, and N. Shankaranarayanan. Design and Characterization of a Full-Duplex Multiantenna System for WiFi Networks. IEEE Transactions on Vehicular Technology, 63(3):1160--1177, March 2014. [30] G. D. Forney. The Viterbi Algorithm. Proceedings of the IEEE, 61(3):268--278, Mar. 1973. [31] G. D. Forney and G. Ungerboeck. Modulation and Coding for Lincear Gaussian Channels. IEEE Transactions on Information Theory, 44(6):2384--2415, Oct. 1998. [32] S. Gollakota and D. Katabi. Zigzag Decoding: Combating Hidden Terminals in Wireless Networks. In ACM SIGCOMM, 2008. [33] S. Goyal, P. Liu, O. Gurbuz, E. Erkip, and S. Panwar. A Distributed MAC Protocol for Full Duplex Radio. In Asilomar Conference on Signals, Systems and Computers, 2013. [34] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11 Packet Delivery from Wireless Channel Measurements. In ACM SIGCOMM, 2010. [35] J. Heiskala and J. Terry. OFDM Wireless LANs: A Theoretical and Practical Guide. Sams Publishing, 2001. [36] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha. Practical, Real-time, Full Duplex Wireless. In ACM MobiCom, 2011. [37] M. Jain, J. I. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha. Practical, Real-time, Full Duplex Wireless. In ACM MOBICOM, 2011. [38] M. Khafagy, A. Ismail, M.-S. Alouini, and S. Aissa. On the Outage Performance of Full-Duplex Selective Decode-and-Forward Relaying. IEEE Communications Letters, 17(6):1180--1183, Jun. 2013. [39] A. Khina, O. Ordentlich, U. Erez, Y. Kochman, and G. W. Wornell. Decode-and-forward for the Gaussian relay channel via standard AWGN coding and decoding. In IEEE Information Theory Workshop, 2012. [40] M. A. A. Khojastepour, K. Sundaresan, S. Rangarajan, and M. Farajzadeh-Tehrani. Scaling Wireless Full-Duplex in Multi-Cell Networks. In IEEE INFOCOM, 2015. [41] J. Y. Kim, O. Mashayekhi, H. Qu, M. Kazandjieva, and P. Levis. Janus: A Novel MAC Protocol for Full Duplex Radio. Technical Report CSTR 2013-02, University of Stanford - Computer Science Department, July 2013. [42] S. Kim and W. Stark. On the Performance of Full Duplex Wireless Networks. In Conference on Information Sciences and Systems (CISS), 2013. [43] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior. IEEE Transactions on Information Theory, 50(12):3062--3080, Dec. 2004. [44] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana. Coordinated Multipoint Transmission and Reception in LTE-Advanced: Deployment Scenarios and Operational Challenges. IEEE Communications Magazine, 50(2):148--155, Feb. 2012. [45] A. Lo and P. Guan. Performance of In-Band Full-Duplex Amplify-and-Forward and Decode-and-Forward Relays with Spatial Diversity for Next-Generation Wireless Broadband. In International Conference on Information Networking (ICOIN), 2011. [46] D. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 2015. [47] S. Luo, P. Liu, and S. Panwar. Full-Duplex Relaying in an Infrastructure-based Wireless Network. IEEE 80th Vehicular Technology Conference, pages 1--6, Sept. 2014. [48] J. Marasevic, J. Zhou, H. Krishnaswamy, Y. Zhong, and G. Zussman. Resource Allocation and Rate Gains in Practical Full-Duplex Systems. In ACM SIGMETRICS, 2015. [49] B. Radunovic, D. Gunawardena, P. Key, A. Proutiere, N. Singh, V. Balan, and G. Dejean. Rethinking Indoor Wireless Mesh Design: Low Power, Low Frequency, Full-duplex. In IEEE Workshop on Wireless Mesh Networks (WiMesh), 2010. [50] B. Rankov and A. Wittneben. Spectral Efficient Protocols for Half-Duplex Fading Relay Channels. IEEE Journal on Selected Areas in Communications, 25(2):379--389, Feb. 2007. [51] T. Riihonen, S. Werner, and R. Wichman. Comparison of Full-Duplex and Half-Duplex Modes with a Fixed Amplify-and-Forward Relay. In IEEE WCNC, 2009. [52] L. J. Rodriguez, N. H. Tran, and T. Le-Ngoc. Performance of Full-Duplex AF Relaying in the Presence of Residual Self-Interference. IEEE Journal on Selected Areas in Communications, 32(9):1752--1764, June 2014. [53] X. Rui, J. Hou, and L. Zhou. Decode-and-forward with full-duplex relaying. International Journal of Communication Systems, 25(2):270--275, Feb. 2012. [54] A. Sahai, G. Patel, and A. Sabharwal. Pushing the Limits of Full-Duplex: Design and Real-time Implementation. CoRR, abs/1107.0607, 2011. [55] N. Singh, D. Gunawardena, A. Proutiere, B. Radunovic, H. Balan, and P. Key. Efficient and Fair MAC for Wireless Networks with Self-Interference Cancellation. In International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2011. [56] O. Somekh, O. Simeone, H. V. Poor, and S. Shamai. Cellular Systems with Full-Duplex Amplify-and-Forward Relaying and Cooperative Base-Stations. In IEEE International Symposium on Information Theory, 2007. [57] K. Sundaresan, M. Khojastepour, E. Chai, and S. Rangarajan. Full-Duplex without Strings: Enabling Full-Duplex with Half-Duplex Clients. In ACM MobiCom, 2014. [58] A. Tang and X. Wang. A-Duplex: Medium Access Control for Efficient Coexistence Between Full-Duplex and Half-Duplex Communications. IEEE Transactions on Wireless Communications, 14(10), Oct 2015. [59] D. Tse and P. Vishwanath. Fundamentals of Wireless Communications. Cambridge University Press, 2005. [60] S. Wang, V. Venkateswaran, and X. Zhang. Exploring Full-Duplex Gains in Multi-Cell Wireless Networks: A Spatial Stochastic Framework. In IEEE INFOCOM, 2015. [61] H. Wu, C. Qiao, S. De, and O. Tonguz. Integrated Cellular and Ad Hoc Relaying Systems: iCAR. IEEE Journal on Selected Areas in Communications, 19(10):2105--2115, Oct. 2001. [62] X. Wu and L.-L. Xie. On the Optimal Compressions in the Compress-and-Forward Relay Schemes. IEEE Transactions on Information Theory, 59(5):2613--2628, May 2013. [63] X. Xie and X. Zhang. Does Full-Duplex Double the Capacity of Wireless Networks? In IEEE INFOCOM, 2014. [64] H. Yu, L. Zhong, A. Sabharwal, and D. Kao. Beamforming on Mobile Devices: a First Study. In ACM MobiCom, 2011. [65] T.-W. Yune, D. Kim, and G.-H. Im. Opportunistic Netowrk-Coded Cooperative Transmission with Demodulate-and-Forward Protocol in Wireless Channels. IEEE Transactions on Communications, 59(7):1791--1795, Jul. 2011. [66] G. Zhang, K. Yang, P. Liu, and J. Wei. Power Allocation for Full-Duplex Relaying-Based D2D Communication Underlaying Cellular Networks. IEEE Transactions on Vehicular Technology, 64(10):4911--4916, Oct. 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50784 | - |
| dc.description.abstract | 在現今無線網路中,低頻段使用越來越頻繁使得期可用資源越來越稀少。為了因應此問題,我們必須想辦法增加頻譜的使用效率,而全多工就是其中一個可能的選向來增加頻譜效率。在全多工技術下,一個無線網路節點能夠在同一頻率下同時傳送和接收,相對於傳統的半雙工技術是可以明顯的增加使用效率。
在這篇論文中,有三個不同的主題主要在研究如何運用全多工技術來增進無線網路效能。首先,我們將全多工技術運用在中繼傳輸上。相較於傳統半雙工中繼技術,全多工中繼點可以接收源點信號並同時傳送信號給目的點進而大幅增加系統效能。第二個主題則是將全多工技術運用在基地台上面使其能夠同時服務上行和下行使用者。但在這樣的環境下,上行使用者會對下行使用者造成干擾,因此我們提出方法解決此干擾來得到系統效能增益。最後,我們提出全多工中繼點的另一種使用方式。當有了全多工中繼點,基地台可以藉由全多工中繼點來服務隔壁基地台的用戶達到基地台間的負載平衡。 | zh_TW |
| dc.description.abstract | In today's wireless networks, spectrum is getting increasingly scarce. Full-duplex, then, is one possible candidate to improve the wireless networks' performance. When we introduce full-duplex capability into a node, it can transmit and receive at the same time and same frequency band, which sometimes we also call it 'in-band full-duplex'.
In this thesis, I aim at exploiting the full-duplex capability to improve the performance of wireless communication networks. There are three different research topics in my thesis. First, I leverage the full-duplex ability on relay transmission. With full-duplex ability, relay can receive signal from source and forward signal to destination simultaneously. This property greatly enhances the efficiency of relay system compared to the half-duplex relay system, which needs to separate its operation into two phases, receiving first and then forwarding. Second, full-duplex can enable simultaneously uplink and downlink transmission. Hence, I introduce the ability into the access point (AP) in 802.11 networks. However, in such transmission, uplink client will interfere downlink client. To realize the full-duplex gain, we propose method to handle the inter-client interference. Finally, I exploit the usage of full-duplex relay to balance the asymmetric load in multi-cell networks. With full-duplex relay, a cell is possibly to help its adjacent cell's client to achieve the load balancing. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:58:12Z (GMT). No. of bitstreams: 1 ntu-105-R03942031-1.pdf: 1682257 bytes, checksum: 408549f94e16c0e4f0f7d8d627dd6577 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 摘要ii
Abstract iii 1 Overview 1 2 Full-Duplex Delay-and-Forward Relaying 4 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 DelayForward Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 DF's ML Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 Power Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Practical System Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6.1 Micro Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6.2 Experimental Throughput Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.3 Simulation-based Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6.4 Effect of insufficient self-interference . . . . . . . . . . . . . . . . . . . . . . . . 27 2.6.5 Experimental MIMO Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Inter-Client Interference Cancellation for Full-Duplex Networks 30 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 IC2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.1 Inter-Client Interference Nulling . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.2 Fast Forwarding Nulling Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.3 Extension to MIMO Full-Duplex Radios . . . . . . . . . . . . . . . . . . . . . . 43 3.3.4 Combining IC2 with Successive Interference Cancellation . . . . . . . . . . . . . 46 3.4 IC2's Medium Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 User Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.2 Channel Estimation and Medium Access . . . . . . . . . . . . . . . . . . . . . . 49 3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6.1 Micro Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.6.2 Testbed Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.3 Results of Trace-driven Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4 LB-FDR: Load Balancing in Multi-Cell Networks with Full-Duplex Relay 63 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 LB-FDR's Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.1 Interference cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.2 Different transmission scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.3 4-step pairing method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1 Available rate reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.2 System throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 Conclusion 77 6 References 78 7 Appendix 86 7.1 Proof for Claim 2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.2 Proof for Claim 3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 | |
| dc.language.iso | en | |
| dc.subject | 全多工 | zh_TW |
| dc.subject | 全多工 | zh_TW |
| dc.subject | Full Duplex | en |
| dc.subject | Full Duplex | en |
| dc.title | 全多工技術在無線通訊網路上之應用 | zh_TW |
| dc.title | Full-Duplex in Wireless Communication Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王奕翔(I-Hsiang Wang),林靖茹(Ching-Ju Lin),李佳翰(Chia-Han Lee) | |
| dc.subject.keyword | 全多工, | zh_TW |
| dc.subject.keyword | Full Duplex, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU201600718 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
