Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50768
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor郭柏齡(Po-Ling Kuo)
dc.contributor.authorPHUNG HAO DINHen
dc.contributor.author馮浩穎zh_TW
dc.date.accessioned2021-06-15T12:57:15Z-
dc.date.available2021-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-14
dc.identifier.citation1. George, J., et al., Dimethylnitrosamine-induced liver injury in rats: the early deposition of collagen. Toxicology, 2001. 156(2–3): p. 129-138.
2. Budny, T., et al., Morphologic features in the regenerating liver—a comparative intravital, lightmicroscopical and ultrastructural analysis with focus on hepatic stellate cells. Virchows Archiv, 2007. 451(4): p. 781-791.
3. Friedman, S.L., et al., Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proceedings of the National Academy of Sciences of the United States of America, 1985. 82(24): p. 8681-8685.
4. Atzori, L., G. Poli, and A. Perra, Hepatic stellate cell: A star cell in the liver. The International Journal of Biochemistry & Cell Biology, 2009. 41(8–9): p. 1639-1642.
5. McCuskey, R.S., The Hepatic Microvascular System in Health and Its Response to Toxicants. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 2008. 291(6): p. 661-671.
6. Ballardini, G., et al., Desmin and actin in the identification of Ito cells and in monitoring their evolution to myofibroblasts in experimental liver fibrosis. Virchows Archiv B, 1988. 56(1): p. 45-49.
7. Kawada, N., et al., The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. European Journal of Biochemistry, 1993. 213(2): p. 815-823.
8. Glicklis, R., et al., Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnology and Bioengineering, 2000. 67(3): p. 344-353.
9. Kikuchi, A. and T. Okano, Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. Journal of Controlled Release, 2005. 101(1–3): p. 69-84.
10. Ho, C.-T., et al., Liver-cell patterning Lab Chip: mimicking the morphology of liver lobule tissue. Lab on a Chip, 2013. 13(18): p. 3578-3587.
11. Halldorsson, S., et al., Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics, 2015. 63: p. 218-231.
12. Kilian, K.A., et al., Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(11): p. 4872-4877.
13. O'Brien, L.E., M.M.P. Zegers, and K.E. Mostov, Building epithelial architecture: insights from three-dimensional culture models. Nat Rev Mol Cell Biol, 2002. 3(7): p. 531-537.
14. Shamir, E.R. and A.J. Ewald, Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nature reviews. Molecular cell biology, 2014. 15(10): p. 647-664.
15. Tanaka, H., et al., Chondrogenic differentiation of murine embryonic stem cells: Effects of culture conditions and dexamethasone. Journal of Cellular Biochemistry, 2004. 93(3): p. 454-462.
16. Toh, Y.-C., et al., A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab on a Chip, 2009. 9(14): p. 2026-2035.
17. Shin, Y., et al., Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat. Protocols, 2012. 7(7): p. 1247-1259.
18. Masaya Oda, H.Y., Jing-Yan Han, Regulatory mechanisms of hepatic microcirculation. Clinical Hemorheology and Microcirculation, 2003. 29(3-4): p. 167-182.
19. Cho, H., et al., How the capillary burst microvalve works. Journal of Colloid and Interface Science, 2007. 306(2): p. 379-385.
20. Moreno-Arotzena, O., et al., Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models. Materials, 2015. 8(4): p. 1636.
21. Serpooshan, V., et al., Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. Acta Biomaterialia, 2013. 9(1): p. 4673-4680.
22. Knapp, D.M., et al., Rheology of reconstituted type I collagen gel in confined compression. Journal of Rheology, 1997. 41(5): p. 971-993.
23. Birukawa, N.K., et al., Activated hepatic stellate cells are dependent on self collagen, cleaved by membrane type 1-matrix metalloproteinase for their growth. Journal of Biological Chemistry, 2014.
24. Okada, Y., et al., Pressure loading and ethanol exposure differentially modulate rat hepatic stellate cell activation. Journal of Cellular Physiology, 2008. 215(2): p. 472-480.
25. Guvendiren, M., et al., Hydrogels with differential and patterned mechanics to study stiffness-mediated myofibroblastic differentiation of hepatic stellate cells. Journal of the Mechanical Behavior of Biomedical Materials, 2014. 38: p. 198-208.
26. Laleman, W., et al., Portal hypertension: from pathophysiology to clinical practice. Liver International, 2005. 25(6): p. 1079-1090.
27. Senoo, H.I., Katsuyuki; Sato, Mitsuru; Kojima, Naosuke; Miura, Mitsutaka; Hata, Ruy-Ichiro, Three-dimensional structure of extracellular matrix reversibly regulates morphology, proliferation, and collagen metabolism of perisinusoidal stellate cells (Vitamin A-storing cells). Cell Biology International. 20(7): p. 501-512.
28. Yi, S.-H., et al., Mechanical force and tensile strain activated hepatic stellate cells and inhibited retinol metabolism. Biotechnology Letters, 2015. 37(6): p. 1141-1152.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50768-
dc.description.abstract肝臟星狀細胞在肝硬化的形成扮演了非常重要的腳色:製造大量的組織纖維,提高肝臟竇狀間隙的壓力以及門脈高壓等。然而,過去的研究大多注重於化學因子的研究,而物理性刺激如間隙內的高壓,血流造成的剪應力等常被忽略。在此研究中,我們發展了一個能夠模擬肝臟竇狀間隙周圍物理環境的三維細胞培養之微流道平台,來研究水壓對於肝臟星狀細胞的影響。zh_TW
dc.description.abstractHepatic stellate cells (HSCs) play a crucial role in the development of liver fibrosis which is characterized by massive tissue scarring, elevated hepatic sinusoidal pressure, and portal hypertension. However, while a multitude of chemical factors have been investigated in the pathogenesis of liver fibrosis, physical factors such as elevated hydrostatic pressure and shear stress caused by blood flow in sinusoids remain unclear. In this study, we developed a 3D cell culture microfluidic platform that mimics the physical environments of hepatic sinusoids to investigate the effects of elevated hydrostatic pressure on HSCs phenotypes.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:57:15Z (GMT). No. of bitstreams: 1
ntu-105-R02945043-1.pdf: 3072665 bytes, checksum: 545fde5e31e447e7922f47faf801d45d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 1
摘要 3
Abstract 4
Content 5
Chapter 1. Introduction 7
Chapter 2. Materials and Methods 12
2.1 Device design and operation principle 12
2.2 Fabrication of microfluidic system 23
2.3 Hydrostatic pressure application and measurement 26
2.4 COMSOL simulation 27
2.4 Cell culture and collagen gel preparation 27
2.5 Image acquisition 28
2.6 Cell staining, imaging and quantification 30
Chapter 3. Results and Discussions 32
3.1 Simulated pressure field and flow rates 32
3.1.1 Water-filled-only: 32
3.1.2 Half-gel and Double-gel: 35
3.1.3 Full-gel: 38
3.1.4 Comparison between no-gel, half-gel and full-gel: 39
3.2 Comparison of pressure between experiment and simulation 41
3.3 HSCs in the device 45
Chapter 4. Conclusions 48
References 50
dc.language.isoen
dc.subject微流道zh_TW
dc.subject肝臟星狀細胞zh_TW
dc.subject肝臟竇狀間隙zh_TW
dc.subject壓力zh_TW
dc.subject三維細胞培養zh_TW
dc.subject微流道zh_TW
dc.subject肝臟星狀細胞zh_TW
dc.subject肝臟竇狀間隙zh_TW
dc.subject壓力zh_TW
dc.subject三維細胞培養zh_TW
dc.subjectHepatic stellate cells (HSCs)en
dc.subjectmicrofluidicsen
dc.subject3D cell cultureen
dc.subjectpressureen
dc.subjecthepatic sinusoidsen
dc.title可模擬肝臟竇狀間隙高壓之三維細胞培養平台zh_TW
dc.titleA 3D cell culture platform for mimicking pressurized hepatic sinusoiden
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林致廷(Chih-Ting Lin),趙本秀(Pen-Hsiu Chao),蘇裕家(Yu-Chia Su)
dc.subject.keyword肝臟星狀細胞,肝臟竇狀間隙,壓力,三維細胞培養,微流道,zh_TW
dc.subject.keywordHepatic stellate cells (HSCs),hepatic sinusoids,pressure,3D cell culture,microfluidics,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201600869
dc.rights.note有償授權
dc.date.accepted2016-07-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
Appears in Collections:生醫電子與資訊學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
3 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved