Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50740
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張煥宗(Huan-Tsung Chang)
dc.contributor.authorYu-Chi Lien
dc.contributor.author李昱錡zh_TW
dc.date.accessioned2021-06-15T12:55:37Z-
dc.date.available2026-12-31
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-15
dc.identifier.citation第一章參考文獻
1.Aiken, J. D.; Finke, R. G. A Review of Modern Transition-Metal Nanoclusters: Their Synthesis, Characterization, and Applications in Catalysis. J. Mol. Catal. A: Chem. 1999, 145, 1-44.
2.(a) Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer Science & Business Media: Germany, 2013; Vol. 25; (b) Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt Rinehart & Winston: New York, 2005; pp 490-495.
3.(a) Haberland, H. Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms; Springer Science & Business Media: Germany, 2013; Vol. 52; (b) Schaaff, T. G.; Knight, G.; Shafigullin, M. N.; Borkman, R. F.; Whetten, R. L. Isolation and Selected Properties of a 10.4 kDa Gold: Glutathione Cluster Compound. J. Phys. Chem. B. 1998, 102, 10643-10646.
4.Díez, I.; Ras, R. H. Fluorescent Silver Nanoclusters. Nanoscale. 2011, 3, 1963-1970.
5.(a) Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development. Asian J. Chem. 2013, 8, 858-871; (b) Choi, S.; Dickson, R. M.; Yu, J. Developing Luminescent Silver Nanodots for Biological Applications. Chem. Soc. Rev. 2012, 41, 1867-1891.
6.Zheng, J. Fluorescent Noble Metal Nanoclusters. Ph.D. Thesis, Georgia Institute of Technology, 2005.
7.Murray, R. W. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chem. Rev. 2008, 108, 2688-2720.
8.Zhang, L.; Wang, E. Metal Nanoclusters: New Fluorescent Probes for Sensors and Bioimaging. Nano Today. 2014, 9, 132-157.
9.(a) De Heer, W. A. The Physics of Simple Metal Clusters: Experimental Aspects and Simple Models. Rev. Mod. Phys. 1993, 65, 611-676; (b) Clemenger, K. Ellipsoidal Shell Structure in Free-Electron Metal Clusters. Phys. Rev. B. 1985, 32, 1359-1362.
10.Zheng, J.; Zhang, C.; Dickson, R. M. Highly Fluorescent, Water-Soluble, Size-tunable Gold Quantum Dots. Phys. Rev. Lett. 2004, 93, 077402, 1-4.
11.Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly Fluorescent Noble Metal Quantum Dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
12.Wu, Z.; Jin, R. On The Ligand’s Role in The Fluorescence of Gold Nanoclusters. Nano Lett. 2010, 10, 2568-2573.
13.Mooradian, A. Photoluminescence of Metals. Phys. Rev. Lett. 1969, 22, 185-187.
14.(a) Huang, T.; Murray, R. W. Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters. J. Phys. Chem. B. 2001, 105, 12498-12502; (b) Zheng, J.; Petty, J. T.; Dickson, R. M. High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots. J. Am. Chem. Soc. 2003, 125, 7780-7781; (c) Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angew. Chem. 2007, 119, 6948-6952.
15.Shibu, E.; Muhammed, M. H.; Tsukuda, T.; Pradeep, T. Ligand Exchange of Au25SG18 Leading to Functionalized Gold Clusters: Spectroscopy, Kinetics, and Luminescence. J. Phys. Chem. C. 2008, 112, 12168-12176.
16.(a) Xie, J.; Zheng, Y.; Ying, J. Y. Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J. Am. Chem. Soc. 2009, 131, 888-889; (b) Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T. Luminescent Quantum Clusters of Gold in Transferrin Family Protein, Lactoferrin Exhibiting FRET. Nanoscale. 2010, 2, 2769-2776.
17.(a) Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-Templated Ag Nanocluster Formation. J. Am. Chem. Soc. 2004, 126, 5207-5212; (b) Lan, G.-Y.; Chen, W.-Y.; Chang, H.-T. Control of Synthesis and Optical Properties of DNA Templated Silver Nanoclusters by Varying DNA Length and Sequence. RSC Adv. 2011, 1, 802-807.
18.Shang, L.; Dong, S. Facile Preparation of Water-Soluble Fluorescent Silver Nanoclusters Using a Polyelectrolyte Template. Chem. Commun. 2008, 9, 1088-1090.
19.Jin, R. Quantum Sized, Thiolate-Protected Gold Nanoclusters. Nanoscale. 2010, 2, 343-362.
20.(a) Lu, Y.; Chen, W. Sub-Nanometre Sized Metal Clusters: from Synthetic Challenges to The Unique Property Discoveries. Chem. Soc. Rev. 2012, 41, 3594-3623; (b) Shiang, Y.-C.; Huang, C.-C.; Chen, W.-Y.; Chen, P.-C.; Chang, H.-T. Fluorescent Gold and Silver Nanoclusters for The Analysis of Biopolymers and Cell Imaging. J. Mater. Chem. 2012, 22, 12972-12982.
21.Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-Induced Emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740-1741.
22.Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From Aggregation-Induced Emission of Au(I)-Thiolate Complexes to Ultrabright Au(0)@ Au(I)-Thiolate Core-Shell Nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
23.TaiáLeong, D. Lighting up Thiolated Au@Ag Nanoclusters via Aggregation-Induced Emission. Nanoscale. 2014, 6, 157-161.
24.Jia, X.; Li, J.; Wang, E. Cu Nanoclusters with Aggregation Induced Emission Enhancement. Small. 2013, 9, 3873-3879.
25.(a) Balogh, L.; Tomalia, D. A. Poly(amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters. J. Am. Chem. Soc. 1998, 120, 7355-7356; (b) Zhao, M.; Sun, L.; Crooks, R. M. Preparation of Cu Nanoclusters within Dendrimer Templates. J. Am. Chem. Soc. 1998, 120, 4877-4878.
26.(a) Vilar-Vidal, N.; Blanco, M. C.; López-Quintela, M. A.; Rivas, J.; Serra, C. Electrochemical Synthesis of Very Stable Photoluminescent Copper Clusters. J. Phys. Chem. C. 2010, 114, 15924-15930; (b) Vázquez-Vázquez, C.; Bañobre-López, M.; Mitra, A.; López-Quintela, M. A.; Rivas, J. Synthesis of Small Atomic Copper Clusters in Microemulsions. Langmuir. 2009, 25, 8208-8216.
27.Wei, W.; Lu, Y.; Chen, W.; Chen, S. One-Pot Synthesis, Photoluminescence, and Electrocatalytic Properties of Subnanometer-Sized Copper Clusters. J. Am. Chem. Soc. 2011, 133, 2060-2063.
28.(a) Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Selective dsDNA‐Templated Formation of Copper Nanoparticles in Solution. Angew. Chem. Int. Ed. 2010, 49, 5665-5667; (b) Jia, X.; Li, J.; Han, L.; Ren, J.; Yang, X.; Wang, E. DNA-Hosted Copper Nanoclusters for Fluorescent Identification of Single Nucleotide Polymorphisms. ACS Nano. 2012, 6, 3311-3317; (c) Qing, Z.; He, X.; He, D.; Wang, K.; Xu, F.; Qing, T.; Yang, X. Poly(thymine)-Templated Selective Formation of Fluorescent Copper Nanoparticles. Angew. Chem. Int. Ed. 2013, 52, 9719-9722; (d) Qing, Z.; He, X.; Qing, T.; Wang, K.; Shi, H.; He, D.; Zou, Z.; Yan, L.; Xu, F.; Ye, X. Poly(thymine)-Templated Fluorescent Copper Nanoparticles for Ultrasensitive Label-Free Nuclease Assay and Its Inhibitors Screening. Anal. Chem. 2013, 85, 12138-12143.
29.Lu, Y.; Wei, W.; Chen, W. Copper Nanoclusters: Synthesis, Characterization and Properties. Chin. Sci. Bull. 2012, 57, 41-47.
30.(a) Zhou, T.; Rong, M.; Cai, Z.; Yang, C. J.; Chen, X. Sonochemical Synthesis of Highly Fluorescent Glutathione-Stabilized Ag Nanoclusters and S2− Sensing. Nanoscale. 2012, 4, 4103-4106; (b) Lippert, A. R.; New, E. J.; Chang, C. J. Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells. J. Am. Chem. Soc. 2011, 133, 10078-10080; (c) Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Capture and Visualization of Hydrogen Sulfide by a Fluorescent Probe. Angew. Chem. Int. Ed. 2011, 50, 10327-10329; (d) Montoya, L. A.; Pluth, M. D. Selective Turn-On Fluorescent Probes for Imaging Hydrogen Sulfide in Living Cells. Chem. Commun 2012, 48, 4767-4769; (e) Chen, W.-Y.; Lan, G.-Y.; Chang, H.-T. Use of Fluorescent DNA-Templated Gold/Silver Nanoclusters for The Detection of Sulfide Ions. Anal. Chem. 2011, 83, 9450-9455; (f) Liu, J.; Chen, J.; Fang, Z.; Zeng, L. A Simple and Sensitive Sensor for Rapid Detection of Sulfide Anions Using DNA-Templated Copper Nanoparticles as Fluorescent Probes. Analyst. 2012, 137, 5502-5505.
31.Reetz, M. T.; Helbig, W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters. J. Am. Chem. Soc. 1994, 116, 7401-7402.
32.López-Quintela, M. A.; Tojo, C.; Blanco, M.; Rio, L. G.; Leis, J. Microemulsion Dynamics and Reactions in Microemulsions. Curr. Opin. Colloid & Interface Sci. 2004, 9, 264-278.
33.Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System. J. Chem. Soc., Chem. Commun. 1994, 7, 801-802.
34.Kawasaki, H.; Kosaka, Y.; Myoujin, Y.; Narushima, T.; Yonezawa, T.; Arakawa, R. Microwave-Assisted Polyol Synthesis of Copper Nanocrystals without Using Additional Protective Agents. Chem. Commun. 2011, 47, 7740-7742.
35.Zhang, H.; Huang, X.; Li, L.; Zhang, G.; Hussain, I.; Li, Z.; Tan, B. Photoreductive Synthesis of Water-Soluble Fluorescent Metal Nanoclusters. Chem. Commun. 2012, 48, 567-569.
36.Chen, P.-C.; Ma, J.-Y.; Chen, L.-Y.; Lin, G.-L.; Shih, C.-C.; Lin, T.-Y.; Chang, H.-T. Photoluminescent AuCu Bimetallic Nanoclusters as pH Sensors and Catalysts. Nanoscale. 2014, 6, 3503-3507.
37.Yu, J.; Patel, S. A.; Dickson, R. M. In Vitro and Intracellular Production of Peptide‐Encapsulated Fluorescent Silver Nanoclusters. Angew. Chem. 2007, 119, 2074-2076.
38.Becerril, H. A.; Woolley, A. T. DNA-Templated Nanofabrication. Chem. Soc. Rev. 2009, 38, 329-337.
39.(a) Wang, C.; Wang, C.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C. Protein-Directed Synthesis of pH-Responsive Red Fluorescent Copper Nanoclusters and Their Applications in Cellular Imaging and Catalysis. Nanoscale. 2014, 6, 1775-1781; (b) Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. Formation of Fluorescent Metal(Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy. J. Phys. Chem. C. 2011, 115, 10955-10963; (c) Mathew, A.; Sajanlal, P.; Pradeep, T. A Fifteen Atom Silver Cluster Confined in Bovine Serum Albumin. J. Mater. Chem. 2011, 21, 11205-11212.
40.Chaudhari, K.; Xavier, P. L.; Pradeep, T. Understanding The Evolution of Luminescent Gold Quantum Clusters in Protein Templates. ACS Nano. 2011, 5, 8816-8827.
41.(a) Lin, Y.-H.; Tseng, W.-L. Ultrasensitive Sensing of Hg2+ and CH3Hg+ Based on The Fluorescence Quenching of Lysozyme Type VI-Stabilized Gold Nanoclusters. Anal. Chem. 2010, 82, 9194-9200; (b) Zhou, T.; Huang, Y.; Li, W.; Cai, Z.; Luo, F.; Yang, C. J.; Chen, X. Facile Synthesis of Red-Emitting Lysozyme-Stabilized Ag Nanoclusters. Nanoscale. 2012, 4, 5312-5315.
42.Liu, C. L.; Wu, H. T.; Hsiao, Y. H.; Lai, C. W.; Shih, C. W.; Peng, Y. K.; Tang, K. C.; Chang, H. W.; Chien, Y. C.; Hsiao, J. K. Insulin‐Directed Synthesis of Fluorescent Gold Nanoclusters: Preservation of Insulin Bioactivity and Versatility in Cell Imaging. Angew. Chem. Int. Ed. 2011, 50, 7056-7060.
43.Kawasaki, H.; Hamaguchi, K.; Osaka, I.; Arakawa, R. PH‐Dependent Synthesis of Pepsin‐Mediated Gold Nanoclusters with Blue Green and Red Fluorescent Emission. Adv. Funct. Mater. 2011, 21, 3508-3515.
44.(a) Wang, Y.; Chen, J.; Irudayaraj, J. Nuclear Targeting Dynamics of Gold Nanoclusters for Enhanced Therapy of HER2+ Breast Cancer. ACS Nnano. 2011, 5, 9718-9725; (b) Li, H.-W.; Ai, K.; Wu, Y. Fluorescence Visual Gel-Separation of Dansylated BSA-Protected Gold-Nanoclusters. Chem. Commun. 2011, 47, 9852-9854.
45.(a) Feng, J.-J.; Huang, H.; Zhou, D.-L.; Cai, L.-Y.; Tu, Q.-Q.; Wang, A.-J. Peptide-Templated Synthesis of Wavelength-Tunable Fluorescent Gold Nanoparticles. J. Mater. Chem. C. 2013, 1, 4720-4725; (b) Wang, Y.; Cui, Y.; Zhao, Y.; Liu, R.; Sun, Z.; Li, W.; Gao, X. Bifunctional Peptides That Precisely Biomineralize Au Clusters and Specifically Stain Cell Nuclei. Chem. Commun. 2012, 48, 871-873.
46.Yuan, X.; Luo, Z.; Zhang, Q.; Zhang, X.; Zheng, Y.; Lee, J. Y.; Xie, J. Synthesis of Highly Fluorescent Metal(Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. ACS Nano. 2011, 5, 8800-8808.
47.Wang, Y.; Cui, Y.; Liu, R.; Wei, Y.; Jiang, X.; Zhu, H.; Gao, L.; Zhao, Y.; Chai, Z.; Gao, X. Blue Two-Photon Fluorescence Metal Cluster Probe Precisely Marking Cell Nuclei of Two Cell Lines. Chem. Commun. 2013, 49, 10724-10726.
48.Yu, Y.; Yao, Q.; Luo, Z.; Yuan, X.; Lee, J. Y.; Xie, J. Precursor Engineering and Controlled Conversion for The Synthesis of Monodisperse Thiolate-Protected Metal Nanoclusters. Nanoscale. 2013, 5, 4606-4620.
49.Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. Size Focusing: A Methodology for Synthesizing Atomically Precise Gold Nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903-2910.
50.(a) Thorum, M. S.; Yadav, J.; Gewirth, A. A. Oxygen Reduction Activity of a Copper Complex of 3, 5‐Diamino‐1, 2, 4‐triazole Supported on Carbon Black. Angew. Chem. Int. Ed. 2009, 48, 165-167; (b) Brushett, F. R.; Thorum, M. S.; Lioutas, N. S.; Naughton, M. S.; Tornow, C.; Jhong, H.-R. M.; Gewirth, A. A.; Kenis, P. J. A Carbon-Supported Copper Complex of 3, 5-Diamino-1, 2, 4-Triazole as a Cathode Catalyst for Alkaline Fuel Cell Applications. J. Am. Chem. Soc. 2010, 132, 12185-12187.
51.Chen, W.; Chen, S. Oxygen Electroreduction Catalyzed by Gold Nanoclusters: Strong Core Size Effects. Angew. Chem. Int. Ed. 2009, 48, 4386-4389.
52.Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science. 2009, 323, 760-764.
53.(a) Tang, W.; Lin, H.; Kleiman-Shwarsctein, A.; Stucky, G. D.; McFarland, E. W. Size-Dependent Activity of Gold Nanoparticles for Oxygen Electroreduction in Alkaline Electrolyte. J. Phys. Chem. C. 2008, 112, 10515-10519; (b) Campbell, F. W.; Belding, S. R.; Baron, R.; Xiao, L.; Compton, R. G. Hydrogen Peroxide Electroreduction at A Silver-Nanoparticle Array: Investigating Nanoparticle Size and Coverage Effects. J. Phys. Chem. C. 2009, 113, 9053-9062; (c) Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J. Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation. Science. 2008, 321, 1331-1335.
54.(a) Er, J. C.; Tang, M. K.; Chia, C. G.; Liew, H.; Vendrell, M.; Chang, Y.-T. MegaStokes BODIPY-Triazoles as Environmentally Sensitive Turn-On Fluorescent Dyes. Chem. Sci. 2013, 4, 2168-2176; (b) He, X.; Wang, Y.; Wang, K.; Chen, M.; Chen, S. Fluorescence Resonance Energy Transfer Mediated Large Stokes Shifting Near-Infrared Fluorescent Silica Nanoparticles for in Vivo Small-Animal Imaging. Anal. Chem. 2012, 84, 9056-9064.
55.Zheng, J.; Zhou, C.; Yu, M.; Liu, J. Different Sized Luminescent Gold Nanoparticles. Nanoscale. 2012, 4, 4073-4083.
56.Shang, L.; Dong, S.; Nienhaus, G. U. Ultra-Small Fluorescent Metal Nanoclusters: Synthesis and Biological Applications. Nano Today 2011, 6, 401-418.
57.Ganguly, A.; Chakraborty, I.; Udayabhaskararao, T.; Pradeep, T. A Copper Cluster Protected with Phenylethanethiol. J. Nanopart. Res. 2013, 15, 1-7.
58.Yuan, Z.; Peng, M.; Shi, L.; Du, Y.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E. S. Disassembly Mediated Fluorescence Recovery of Gold Nanodots for Selective Sulfide Sensing. Nanoscale. 2013, 5, 4683-4686.
第二章參考文獻
1. Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly Fluorescent Noble Metal Quantum Dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
2. (a)Luo, Z.; Zheng, K.; Xie, J. Engineering Ultrasmall Water-Soluble Gold and Silver Nanoclusters for Biomedical Applications. Chem. Commun. 2014, 50, 5143-5155; (b)Yuan, Z.; Chen, Y.-C.; Li, H.-W.; Chang, H.-T. Fluorescent Silver Nanoclusters Stabilized by DNA Scaffolds. Chem. Commun. 2014, 50, 9800-9815; (c)Liu, J. DNA-Stabilized, Fluorescent, Metal Nanoclusters for Biosensor Development. TrAC, Trends Anal. Chem. 2014, 58, 99-111; (d)Yuan, X.; Luo, Z.; Yu, Y.; Yao, Q.; Xie, J. Luminescent Noble Metal Nanoclusters as An Emerging Optical Probe for Sensor Development. Asian J. Chem. 2013, 8, 858-871.
3. Goswami, N.; Zheng, K.; Xie, J. Bio-NCs-The Marriage of Ultrasmall Metal Nanoclusters with Biomolecules. Nanoscale. 2014, 6, 13328-13347.
4. (a)Ghosh, R.; Sahoo, A. K.; Ghosh, S. S.; Paul, A.; Chattopadhyay, A. Blue-Emitting Copper Nanoclusters Synthesized in The Presence of Lysozyme as Candidates for Cell Labeling. ACS Appl. Mater. Inter. 2014, 6, 3822-3828; (b)Vilar-Vidal, N.; Blanco, M. C.; López-Quintela, M. A.; Rivas, J.; Serra, C. Electrochemical Synthesis of Very Stable Photoluminescent Copper Clusters. J. Phys. Chem. C. 2010, 114, 15924-15930.
5. (a)Goswami, N.; Giri, A.; Bootharaju, M.; Xavier, P. L.; Pradeep, T.; Pal, S. K. Copper Quantum Clusters in Protein Matrix: Potential Sensor of Pb2+ Ion. Anal. Chem. 2011, 83, 9676-9680; (b)Wang, C.; Wang, C.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C. Protein-Directed Synthesis of pH-Responsive red Fluorescent Copper Nanoclusters and Their Applications in Cellular Imaging and Catalysis. Nanoscale. 2014, 6, 1775-1781.
6. Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Selective dsDNA‐Templated Formation of Copper Nanoparticles in Solution. Angew. Chem. Int. Ed. 2010, 49, 5665-5667.
7. Fernández-Ujados, M.; Trapiella-Alfonso, L.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. One-Step Aqueous Synthesis of Fluorescent Copper Nanoclusters by Direct Metal Reduction. Nanotech. 2013, 24, 495601-496607.
8. Barthel, M. J.; Angeloni, I.; Petrelli, A.; Avellini, T.; Scarpellini, A.; Bertoni, G.; Armirotti, A.; Moreels, I.; Pellegrino, T. Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands. ACS Nano. 2015, 9, 11886-11897.
9. Ma, J.-Y.; Chen, P.-C.; Chang, H.-T. Detection of Hydrogen Sulfide Through Photoluminescence Quenching of Penicillamine-Copper Nanocluster Aggregates. Nanotech. 2014, 25, 195502-195509.
10. Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. From Aggregation-Induced Emission of Au(I)-Thiolate Complexes to Ultrabright Au(0)@ Au(I)-Thiolate Core-Shell Nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.
11. Eaton, A.; Clesceri, L. S.; Rice, E. W.; Greenberg, A. E.; Franson, M. APHA: Standard Methods for The Examination of Water and Wastewater. Centennial Edition., APHA, AWWA, WEF, Washington, DC 2005.
12. Ahn, H.; Kim, S. Y.; Kim, O.; Choi, I.; Lee, C.-H.; Shim, J. H.; Park, M. J. Blue-Emitting Self-Assembled Polymer Electrolytes for Fast, Sensitive, Label-Free Detection of Cu(II)Ions in Aqueous Media. ACS Nano. 2013, 7, 6162-6169.
13. Chiang, C.-C.; Wei, M.-T.; Chen, Y.-Q.; Yen, P.-W.; Huang, Y.-C.; Chen, J.-Y.; Lavastre, O.; Guillaume, H.; Guillaume, D.; Chiou, A. Optical Tweezers Based Active Microrheology of Sodium Polystyrene Sulfonate(NaPSS). Opt. Express. 2011, 19, 8847-8854.
14. (a)Jia, X.; Li, J.; Wang, E. Cu Nanoclusters With Aggregation Induced Emission Enhancement. Small. 2013, 9, 3873-3879; (b) Lippert, A. R.; New, E. J.; Chang, C. J. Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells. J. Am. Chem. Soc. 2011, 133, 10078-10080.
15. Lopez, A.; Liu, J. Light-Activated Metal-Coordinated Supramolecular Complexes with Charge-Directed Self-Assembly. J. Phys. Chem. C. 2013, 117, 3653-3661.
16. (a)Jin, R. Quantum Sized, Thiolate-Protected Gold Nanoclusters. Nanoscale. 2010, 2, 343-362; (b)Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited: Bridging The Gap Between Gold(I)-Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261-5270.
17. (a)Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T. Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angew. Chem. 2007, 119, 6948-6952; (b)Jia, X.; Yang, X.; Li, J.; Li, D.; Wang, E. Stable Cu Nanoclusters: from An Aggregation-Induced Emission Mechanism to Biosensing and Catalytic Applications. Chem. Commun. 2014, 50, 237-239.
18. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters. Springer Science & Business Media: 2013; Vol. 25.
19. Nida, D.; Nitin, N.; Yu, W.; Colvin, V.; Richards-Kortum, R. Photostability of Quantum Dots with Amphiphilic Polymer-Based Passivation Strategies. Nanotech. 2007, 19, 035701-035707.
20. (a)Bérubé, P. R.; Parkinson, P. D.; Hall, E. R. Measurement of Reduced Sulphur Compounds Contained in Aqueous Matrices by Direct Injection into A Gas Chromatograph with A Flame Photometric Detector. J. Chromatogr. A. 1999, 830, 485-489; (b)Choi, M. G.; Cha, S.; Lee, H.; Jeon, H. L.; Chang, S.-K. Sulfide-Selective Chemosignaling by A Cu2+ Complex of Dipicolylamine Appended Fluorescein. Chem. Commun. 2009, 47, 7390-7392; (c)Choi, M. F. Fluorimetric Optode Membrane for Sulfide Detection. Analyst. 1998, 123, 1631-1634; (d) Bitziou, E.; Joseph, M. B.; Read, T. L.; Palmer, N.; Mollart, T.; Newton, M. E.; Macpherson, J. V. In Situ Optimization of pH for Parts-Per-Billion Electrochemical Detection of Dissolved Hydrogen Sulfide Using Boron Doped Diamond Flow Electrodes. Anal. Chem. 2014, 86, 10834-10840; (e)Mai, L.; Xu, L.; Gao, Q.; Han, C.; Hu, B.; Pi, Y. Single β-AgVO3 Nanowire H2S Sensor. Nano Lett. 2010, 10, 2604-2608; (f) Zhang, S.; Zhang, P.; Wang, Y.; Ma, Y.; Zhong, J.; Sun, X. Facile Fabrication of a Well-Ordered Porous Cu-Doped SnO2 Thin Film for H2S Sensing. ACS Appl. Mater. Inter. 2014, 6, 14975-14980; (g) Pandey, S. K.; Kim, K.-H.; Tang, K.-T. A Review of Sensor-Based Methods for Monitoring Hydrogen Sulfide. TrAC, Trends Anal. Chem. 2012, 32, 87-99; (h)Yuan, Z.; Peng, M.; Shi, L.; Du, Y.; Cai, N.; He, Y.; Chang, H.-T.; Yeung, E. S. Disassembly Mediated Fluorescence Recovery of Gold Nanodots for Selective Sulfide Sensing. Nanoscale. 2013, 5, 4683-4686.
21. Biederman, G.; Schindler, P. On The Solubility Product of Precipitated Iron Hydroxide. Acta Chem. Scand. 1957, 11, 9-15.
22. (a)Lahr, R. H.; Wallace, G. C.; Vikesland, P. J. Raman Characterization of Nanoparticle Transport in Microfluidic Paper-Based Analytical Devices(μPADs). ACS Appl. Mater. Inter. 2015, 7, 9139-9146; (b)Badu-Tawiah, A. K.; Lathwal, S.; Kaastrup, K.; Al-Sayah, M.; Christodouleas, D. C.; Smith, B. S.; Whitesides, G. M.; Sikes, H. D. Polymerization-Based Signal Amplification for Paper-Based Immunoassays. Lab Chip. 2015, 15, 655-659.
23. He, X.; Wang, Y.; Wang, K.; Chen, M.; Chen, S. Fluorescence Resonance Energy Transfer Mediated Large Stokes Shifting Near-Infrared Fluorescent Silica Nanoparticles for in Vivo Small-Animal Imaging. Anal. Chem. 2012, 84, 9056-9064.
24. Gore, A. H.; Vatre, S. B.; Anbhule, P. V.; Han, S.-H.; Patil, S. R.; Kolekar, G. B. Direct Detection of Sulfide Ions [S2−] in Aqueous Media Based on Fluorescence Quenching of Functionalized CdS QDs at Trace Levels: Analytical Applications to Environmental Analysis. Analyst. 2013, 138, 1329-1333.
25. Cui, M.-L.; Liu, J.-M.; Wang, X.-X.; Lin, L.-P.; Jiao, L.; Zheng, Z.-Y.; Zhang, L.-H.; Jiang, S.-L. A Promising Gold Nanocluster Fluorescent Sensor for The Highly Sensitive and Selective Detection of S2−. Sens. Actuators, B. 2013, 188, 53-58.
26. Chen, W.-Y.; Lan, G.-Y.; Chang, H.-T. Use of Fluorescent DNA-Templated Gold/Silver Nanoclusters for The Detection of Sulfide Ions. Anal. Chem. 2011, 83, 9450-9455.
27. Zhou, T.; Rong, M.; Cai, Z.; Yang, C. J.; Chen, X. Sonochemical Synthesis of Highly Fluorescent Glutathione-Stabilized Ag Nanoclusters and S2− Sensing. Nanoscale. 2012, 4, 4103-4106.
28. Liu, J.; Chen, J.; Fang, Z.; Zeng, L. A Simple and Sensitive Sensor for Rapid Detection of Sulfide Anions Using DNA-Templated Copper Nanoparticles as Fluorescent Probes. Analyst. 2012, 137, 5502-5505.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50740-
dc.description.abstract本篇論文主要在開發一步合成法,利用加入不同濃度的聚苯乙烯磺酸鈉(polystyrene sulfonate)控制青黴胺(penicillamine)-銅奈米團簇聚集大小。相較於沒有加入聚苯乙烯磺酸鈉的銅奈米團簇,經由聚電解質調控聚集體大小的銅奈米團簇具有很好的分散性、光穩定性以及對於硫化氫有很好的選擇性與靈敏性,對於硫化氫的偵測極限為650 nM,因此可應用於偵測溫泉水樣品中之硫化氫。此外,更將此發光銅奈米團簇與可攜式紙質分析裝置(microfluidic paper-based analytical device)結合,直接使用肉眼判定溫泉水中硫化氫之有無以及微量盤式螢光儀定量硫化氫濃度。有別於傳統的硫化氫檢測方法只能於溶液相進行檢測,我們利用加熱溫泉水後會釋放出硫化氫氣體,可與紙質平臺上的銅奈米團簇反應後使其螢光消光,可直接使用肉眼進行快速判定,此方法亦可避免樣品中一些金屬離子的干擾;而使用微量盤式螢光儀直接定量硫化氫濃度於紙質裝置上,此方法相較於傳統公告方法只需非常小的樣品體積(5 μL)以及較短的分析時間(30分鐘),對於硫化氫的偵測極限為1 μM。由於此發光銅奈米團簇/紙質裝置具有製備簡單、成本低、可拋棄、快速偵測且精準等優點,因此具有很大的發展潛力於監控氣相與液相硫化氫之含量。zh_TW
dc.description.abstractAn one-pot approach has been developed to control the size of penicillamine-copper nanocluster (PA-Cu NC) aggregates through the addition of different concentrations of polystyrene sulfonate (PSS). The PSS-PA-Cu NC aggregates are photoluminescent and have excellent water dispersity, better photostability under UV irradiation, and remarkable sensitivity towards H2S (limit of detection: 650 nM) compared to PA-Cu NC aggregates without PSS dispersion. The practicability of this probe was verified by determination of the H2S concentration in hot spring-water samples. The PSS-PA-Cu NCs were integrated into a portable microfluidic paper-based analytical device (μPAD) for the on/off determination of H2S in hot spring-water samples. This platform targets released H2S gas to avoid interference from other ions in water samples in contrast with conventional H2S detection methods which can only determine H2S directly from solution. The PSS-PA-Cu NC/μPADs use ultra-low sample volumes (5 μL) and feature shorter analysis times (~30 min) compared to conventional solution-based methods. The quantitative results not only can be seen by the naked-eye, as well as facilely recorded and transmitted using a smartphone but also can determined by microplate reader. The LOD of the PSS-PA-Cu NC/μPAD device was 1 μM. In conclusion the PSS-PA-Cu NC/μPADs have great potential to monitor H2S levels in gaseous and liquid samples.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:55:37Z (GMT). No. of bitstreams: 1
ntu-105-R03223140-1.pdf: 2724146 bytes, checksum: 9203da9c73b40a8ef250332c8929d9e9 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents論文口試委員審定書..............................i
謝誌 .........................................ii
中文摘要.......................................v
英文摘要.......................................vi
目錄 ........................................ vii
圖目錄 ........................................ix
表目錄 ........................................xi
第一章 緒論 ....................................1
1.1 螢光貴金屬奈米團 ............................1
1.2 螢光銅奈米團簇 ..............................4
1.3 螢光銅奈米團簇之製備方法 .....................5
1.3.1 以聚合物穩定之銅奈米團簇 ...................7
1.3.2 以 DNA 分子穩定之銅奈米團簇.................8
1.3.3 以蛋白質穩定之銅奈米團簇 ...................9
1.3.4 以胜肽穩定之銅奈米團簇.....................10
1.3.5 以巰基分子穩定之銅奈米團簇 .................12
1.4 螢光奈米團簇之應用...........................13
1.5 研究動機動..................................14
1.6 圖表 ......................................15
1.7 參考文獻 ..................................25
第二章 控制銅奈米團簇聚集體大小並應用於紙質平臺偵測硫化氫....34
2.1 前言 .....................................34
2.2 實驗方法 ..................................35
2.2.1 實驗藥品 ................................35
2.2.2 實驗儀器 ................................36
2.2.3 銅奈米團簇的合成 .........................36
2.2.4 紙質裝置的製備 ...........................37
2.2.5 利用銅奈米團簇聚集體偵測硫化氫 .............37
2.2.6 偵測溫泉水樣品中的硫化氫含量................37
2.2.7 利用銅奈米團簇/紙質裝置偵測硫化氫............38
2.2.8 銅奈米團簇/紙質裝置上偵測溫泉水樣品中的硫化氫..38
2.3 實驗結果與討論 ...............................38
2.3.1 聚電解質對銅奈米團簇聚集體形成之影響 .........38
2.3.2 銅奈米團簇聚集體的光學性質與特性 .............41
2.3.3 銅奈米團簇聚集體偵測硫化氫之機制與溫泉水樣品中之檢測...43
2.3.4 於銅奈米團簇/紙質裝置上偵測硫化與溫泉水樣品中之檢測...45
2.4 結論 ........................................47
2.5 圖表 ........................................49
2.6 參考文獻 ....................................65
dc.language.isozh-TW
dc.subject銅奈米團簇聚集體zh_TW
dc.subject硫化氫zh_TW
dc.subject銅奈米團簇聚集體zh_TW
dc.subject紙質裝置zh_TW
dc.subject硫化氫zh_TW
dc.subject聚電解質zh_TW
dc.subject聚電解質zh_TW
dc.subject紙質裝置zh_TW
dc.subjectpaper-based devicesen
dc.subjectcopper nanoclusters aggregatesen
dc.subjectpolyelectrolyteen
dc.subjecthydrogen sulfideen
dc.subjecthydrogen sulfideen
dc.subjectcopper nanoclusters aggregatesen
dc.subjectpaper-based devicesen
dc.subjectpolyelectrolyteen
dc.title調控銅奈米團簇聚集體大小並應用於紙質平臺偵測硫化氫zh_TW
dc.titleSize-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devicesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡焯淳(Cho-Chun Hu),吳秀梅(Shou-Mei Wu),陳明娟(Min-Jane Chen),陳建甫(Chien-Fu Chen)
dc.subject.keyword銅奈米團簇聚集體,硫化氫,紙質裝置,聚電解質,zh_TW
dc.subject.keywordcopper nanoclusters aggregates,hydrogen sulfide,paper-based devices,polyelectrolyte,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201600868
dc.rights.note有償授權
dc.date.accepted2016-07-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved