Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50739
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorTzu-Min Sunen
dc.contributor.author孫梓閔zh_TW
dc.date.accessioned2021-06-15T12:55:34Z-
dc.date.available2019-08-31
dc.date.copyright2016-08-31
dc.date.issued2016
dc.date.submitted2016-07-15
dc.identifier.citation1. R. V. Ambartsumyan, N. G. Basov, P. G. Kryukov, and V. S. Letokhov, IEEE J. Quant. Electron. 2, 442 (1966).
2. H. Cao., Y. G. Zhao, S.T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).
3. F. Luan, B. Gu, A. S. L. Gomes, K.-T. Yong, S. Wen, P. N. Prasad, Nano Today 10, 168 (2015).
4. Wiersma, D. S. Nature Phys. 4, 359-367 (2008).
5. Wiersma, D. S. & Cavalieri, S. Light emission: A temperature-tunable random laser. Nature 414, 708-709 (2001).
6. Lee, C.-R. et al. Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell. Opt. Mater. Express 5, 1469 (2015).
7. Zhai, T. et al. A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale 7, 2235-2240 (2015).
1. Wiersma, D. S., The physics and applications of random lasers. Nature Phys. 2008, 4 (5), 359-367.
2. Luan, F.; Gu, B.; Gomes, A. S. L.; Yong, K.-T.; Wen, S.; Prasad, P. N., Lasing in nanocomposite random media. Nano Today 2015, 10 (2), 168-192.
3. C. S. Wang, Doctoral Dissertation, Department of Physics, National Taiwan University (2014).
4. Segev, M.; Silberberg, Y.; Christodoulides, D. N., Anderson localization of light. Nature Photonics 2013, 7 (3), 197-204.
5. Abrahams, E., Anderson, P.W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 1979, 42, 673–676.
6. Polson, R. C., Chipouline, A. & Vardeny, Z. V. Random lasing in pi-conjugated films and infiltrated opals. Adv. Mater. 2001, 13, 760–764.
7. Mujumdar, S., Ricci, M., Torre, R. &Wiersma, D. S. Amplified extended modes in random lasers. Phys. Rev. Lett. 2004, 93, 053903.
8. Strangi, G. et al. Random lasing and weak localization of light in dye-doped nematic liquid crystals. Opt. Express 2006, 14, 7737–7744.
9. Nathan, M. I.; Fowler, A. B.; Burns, G. Oscillations in GaAs Spontaneous Emission in Fabry–Pérot Cavities. Phys. Rev. Lett. 1963, 11, 152-154.
10. Wiersma, D. S. & Cavalieri, S. A temperature-tunable random laser. Nature 2001, 414, 708–709.
11. Lee, C.-R.; Lin, S.-H.; Guo, J.-W.; Lin, J.-D.; Lin, H.-L.; Zheng, Y.-C.; Ma, C.-L.; Horng, C.-T.; Sun, H.-Y.; Huang, S.-Y., Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell. Opt. Mater. Express 2015, 5 (6), 1469.
12. Gottardo, S., Cavalieri, S., Yaroschuck, O. &Wiersma, D. S. Quasi 2D random laser action. Phys. Rev. Lett. 2004, 93, 263901.
13. S. Zumer, J.W. Doane, Light scattering from a small nematic droplet. Phys. Rev. A 1986, 34, 3373.
14. Zhai, T.; Chen, J.; Chen, L.; Wang, J.; Wang, L.; Liu, D.; Li, S.; Liu, H.; Zhang, X., A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate. Nanoscale 2015, 7 (6), 2235-40.
15. Y. C. Chien, Master thesis, Department of Physics, National Taiwan University (2015).
16. Moll, J.L., Variable capacitance with large capacity charge. Wescon Convention Record 1959, 32, 3.
17. Pfann, W. G.; Garrett, C. G. B., Semiconductor varactors using surface space-charge layers. Proceedings of the Institute of Radio Engineers 1959, 47, 2011 -2012.
18. Bersch, E.; Bartynski, R. A., Energy level alignment in metal / oxide / semiconductor and organic dye/oxide systems. Ph.D. Dissertation, University of New Jersey, New Brunswick, 2008.
19. Schenk, A.; Heiser, G., Modeling and simulation of tunneling through ultra-thin gate dielectrics. Journal of Applied Physics 1997, 81 (12), 7900.
20. Fowler, R. H.; Nordheim, L., Electron Emission in Intense Electric Fields. Proceedings of the Royal Society of London 1928, 119(781), 173-181.
21. Simmons, J. G., Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. Journal of Applied Physics 1963, 34 (6), 1793.
22. Müller, M.; Miao, G.-X.; Moodera, J. S., Exchange splitting and bias-dependent transport in EuO spin filter tunnel barriers. Europhysics Letters 2009, 88 (4), 47006.
1. Schroder, D. K., Semiconductor Material and Device Characterization, Wiley (1998).
2. http://www.ieo.nctu.edu.tw/~ieofuture/102/LZori.html
3. http://www.lasertech.tw/laser_noun.php?g_id=IyQlKiYlMTAlXiQqJio=
 
1. Khang, D.-Y.; Jiang, H.; Huang, Y.; Rogers, J. A. A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates. Science 2006, 311, 208-212.
2. Ko, H. C.; Stoykovich, M. P.; Song, J.; Malyarchuk, V.; Choi, W. M.; Yu, C.-J.; Geddes Iii, J. B.; Xiao, J.; Wang, S.; Huang, Y., et al. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature 2008, 454, 748-753.
3. El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326-1330.
4. White, M. S.; Kaltenbrunner, M.; Glowacki, E. D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D. A. M.; Miron, M. C., et al. Ultrathin, highly flexible and stretchable PLEDs. Nat Photon 2013, 7, 811-816.
5. Xu, S.; Zhang, Y.; Jia, L.; Mathewson, K. E.; Jang, K.-I.; Kim, J.; Fu, H.; Huang, X.; Chava, P.; Wang, R., et al. Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin. Science 2014, 344, 70-74.
6. Noh, H.; Yang, J.-K.; Liew, S. F.; Rooks, M. J.; Solomon, G. S.; Cao, H. Control of Lasing in Biomimetic Structures with Short-Range Order. Phys. Rev. Lett. 2011, 106, 183901.
7. Feng, S.; Kane, C.; Lee, P. A.; Stone, A. D. Correlations and Fluctuations of Coherent Wave Transmission through Disordered Media. Phys. Rev. Lett. 1988, 61, 834-837.
8. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 2008, 4, 359-367.
9. Nizamoglu, S.; Gather, M. C.; Yun, S. H. Biomaterial Laser: All-Biomaterial Laser Using Vitamin and Biopolymers (Adv. Mater. 41/2013). Adv. Mater. 2013, 25, 5988-5988.
10. Redding, B.; Cerjan, A.; Huang, X.; Lee, M. L.; Stone, A. D.; Choma, M. A.; Cao, H. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging. Proc. Nat. Acad. Sci. USA 2015, 112, 1304-1309.
11. Huang, M. H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater. 2001, 13, 113-116.
12. Djurisic, A. B.; Leung, Y. H. Optical properties of ZnO nanostructures. Small 2006, 2, 944-61.
13. Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random Laser Action in Semiconductor Powder. Phys. Rev. Lett. 1999, 82, 2278-2281.
14. Yu, S. F.; Yuen, C.; Lau, S. P.; Park, W. I.; Yi, G.-C. Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl. Phys. Lett. 2004, 84, 3241.
15. Hsu, H.-C.; Wu, C.-Y.; Hsieh, W.-F. Stimulated emission and lasing of random-growth oriented ZnO nanowires. J. Appl. Phys. 2005, 97, 064315.
16. Lee, C.-R.; Lin, S.-H.; Guo, J.-W.; Lin, J.-D.; Lin, H.-L.; Zheng, Y.-C.; Ma, C.-L.; Horng, C.-T.; Sun, H.-Y.; Huang, S.-Y. Electrically and thermally controllable nanoparticle random laser in a well-aligned dye-doped liquid crystal cell. Opt. Mater. Express 2015, 5, 1469.
17. Chen, R.; Ta, V. D.; Sun, H. Bending-Induced Bidirectional Tuning of Whispering Gallery Mode Lasing from Flexible Polymer Fibers. ACS Photonics 2014, 1, 11-16.
18. Li, L.; Wang, L.; Deng, L. Low threshold random lasing in DDPDLCs, DDPDLC@ZnO nanoparticles and dye solution@ZnO nanoparticle capillaries. Laser Phys. Lett. 2014, 11, 025201.
19. Wiersma, D. S.; Cavalieri, S. Light emission: A temperature-tunable random laser. Nature 2001, 414, 708-709.
20. Wang, C.-S.; Chang, T.-Y.; Lin, T.-Y.; Chen, Y.-F. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors. Sci. Rep. 2014, 4.
21. Nathan, M. I.; Fowler, A. B.; Burns, G. Oscillations in GaAs Spontaneous Emission in Fabry–Pérot Cavities. Phys. Rev. Lett. 1963, 11, 152-154.
22. Sears, G. W. A growth mechanism for mercury whiskers. Acta Metall. 1955, 3, 361-366.
23. Sears, G. W. A mechanism of whisker growth. Acta Metall. 1955, 3, 367-369.
24. Yoshino, K.; Tatsuhara, S.; Kawagishi, Y.; Ozaki, M.; Zakhidov, A. A.; Vardeny, Z. V. Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals. Appl. Phys. Lett. 1999, 74, 2590-2592.
25. Cao, H.; Xu, J. Y.; Chang, S. H.; Ho, S. T. Transition from amplified spontaneous emission to laser action in strongly scattering media. Phys. Rev. E 2000, 61, 1985-1989.
26. Bahoura, M.; Morris, K. J.; Noginov, M. A. Threshold and slope efficiency of Nd0.5La0.5Al3(BO3)4 ceramic random laser: effect of the pumped spot size. Opt. Commun. 2002, 201, 405-411.
27. Zhang, D.; Wang, Y.; Ma, D. Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles. Appl. Phys. Lett. 2007, 91, 091115.
28. Chen, Y. L.; Chen, C. L.; Lin, H. Y.; Chen, C. W.; Chen, Y. F.; Hung, Y.; Mou, C. Y. Enhancement of random lasing based on the composite consisting of nanospheres embedded in nanorods template. Opt. Express 2009, 17, 12706-12713.
(1) Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 2011, 479, 329-337.
(2) Daquan, F., Chenzi, J., Gubong, L., Cimini, L. J., Jr., Gang, F. & Li, G. Y. A survey of energy-efficient wireless communications. IEEE Commun. Surveys Tuts. 2013, 15, 167-178.
(3) Waltereit, P., Brandt, O., Trampert, A., Grahn, H. T., Menniger, J., Ramsteiner, M., Reiche, M. & Ploog, K. H. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 2000, 406, 865-868.
(4) Ultraviolet-enhanced light emitting diode employing individual ZnO microwire with SiO2 barrier layers. Appl. Phys. Lett. 2015, 106, 212105.
(5) Kwon, M.-K., Kim, J.-Y., Kim, B.-H., Park, I.-K., Cho, C.-Y., Byeon, C. C. & Park, S.-J. Surface-Plasmon-Enhanced Light-Emitting Diodes. Adv. Mater. 2008, 20, 1253-1257.
(6) Zhang, H., Chen, S. & Zhao, D. Surface-plasmon-enhanced microcavity organic light-emitting diodes. Opt. Express 2014, 22, A1776-A1782.
(7) Chen, J. Y., Ho, C. Y., Lu, M. L., Chu, L. J., Chen, K. C., Chu, S. W., Chen, W., Mou, C. Y. & Chen, Y. F. Efficient Spin-Light Emitting Diodes Based on InGaN/GaN Quantum Disks at Room Temperature: A New Self-Polarized Paradigm. Nano Letters 2014, 14, 3130-3137.
(8) Chen, J.-Y., Wong, T.-M., Chang, C.-W., Dong, C.-Y. & Chen, Y.-F. Self-polarized spin-nanolasers. Nature Nanotech. 2014, 9, 845-850.
(9) Chang, C.-W., Tan, W.-C., Lu, M.-L., Pan, T.-C., Yang, Y.-J. & Chen, Y.-F. Graphene/SiO2/p-GaN Diodes: An Advanced Economical Alternative for Electrically Tunable Light Emitters. Adv. Funct. Mater. 2013, 23, 4043-4048.
(10) Williamson, A., Rivnay, J., Kergoat, L., Jonsson, A., Inal, S., Uguz, I., Ferro, M., Ivanov, A., Sjöström, T. A., Simon, D. T., Berggren, M., Malliaras, G. G. & Bernard, C. Controlling Epileptiform Activity with Organic Electronic Ion Pumps. Adv. Mater. 2015, 27, 3138-3144.
(11) Yin, L., Huang, X., Xu, H., Zhang, Y., Lam, J., Cheng, J. & Rogers, J. A. Biodegradable Electronics: Materials, Designs, and Operational Characteristics for Fully Biodegradable Primary Batteries (Adv. Mater. 23/2014). Adv. Mater. 2014, 26, 3777-3777.
(12) Zheng, Q., Shi, B., Fan, F., Wang, X., Yan, L., Yuan, W., Wang, S., Liu, H., Li, Z. & Wang, Z. L. In Vivo Powering of Pacemaker by Breathing-Driven Implanted Triboelectric Nanogenerator. Adv. Mater. 2014, 26, 5851-5856.
(13) Schwartz, G., Tee, B. C. K., Mei, J., Appleton, A. L., Kim, D. H., Wang, H. & Bao, Z. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013, 4, 1859.
(14) Zhang, J., Landry, M. P., Barone, P. W., Kim, J.-H., Lin, S., Ulissi, Z. W., Lin, D., Mu, B., Boghossian, A. A., Hilmer, A. J., Rwei, A., Hinckley, A. C., Kruss, S., Shandell, M. A., Nair, N., Blake, S., Sen, F., Sen, S., Croy, R. G., Li, D., Yum, K., Ahn, J.-H., Jin, H., Heller, D. A., Essigmann, J. M., Blankschtein, D. & Strano, M. S. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nature Nanotech. 2013, 8, 959-968.
(15) Kim, D.-H., Lu, N., Ma, R., Kim, Y.-S., Kim, R.-H., Wang, S., Wu, J., Won, S. M., Tao, H., Islam, A., Yu, K. J., Kim, T.-i., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H.-J., Keum, H., McCormick, M., Liu, P., Zhang, Y.-W., Omenetto, F. G., Huang, Y., Coleman, T. & Rogers, J. A. Epidermal Electronics. Science 2011, 333, 838-843.
(16) Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwodiauer, R., Graz, I., Bauer-Gogonea, S., Bauer, S. & Someya, T. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499, 458-463.
(17) Jeong, K.-H., Kim, J. & Lee, L. P. Biologically Inspired Artificial Compound Eyes. Science 2006, 312, 557-561.
(18) Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 2001, 412, 819-822.
(19) Irimia-Vladu, M., Sariciftci, N. S. & Bauer, S. Exotic materials for bio-organic electronics. J. Mater. Chem. 2011, 21, 1350-1361.
(20) Bettinger, C. J. & Bao, Z. Biomaterials-based organic electronic devices. Polym. Int. 2010, 59, 563-567.
(21) Choi, Y., Jeon, H. & Kim, S. A fully biocompatible single-mode distributed feedback laser. Lab Chip 2015, 15, 642-645.
(22) Sun, T.-M., Wang, C.-S., Liao, C.-S., Lin, S.-Y., Perumal, P., Chiang, C.-W. & Chen, Y.-F. Stretchable Random Lasers with Tunable Coherent Loops. ACS Nano 2015,
(23) Nizamoglu, S., Gather, M. C. & Yun, S. H. All-Biomaterial Laser Using Vitamin and Biopolymers. Adv. Mater. 2013, 25, 5943-5947.
(24) Mills, R. W., Uhl, A., Blackwell, G. B. & Jandt, K. D. High power light emitting diode (LED) arrays versus halogen light polymerization of oral biomaterials: Barcol hardness, compressive strength and radiometric properties. Biomaterials 2002, 23, 2955-2963.
(25) Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R. & Tschaplinski, T. The Path Forward for Biofuels and Biomaterials. Science 2006, 311, 484-489.
(26) Chen, Y. C., Yu, H. C., Huang, C. Y., Chung, W. L., Wu, S. L. & Su, Y. K. Nonvolatile bio-memristor fabricated with egg albumen film. Sci Rep 2015, 5, 10022.
(27) Kelkar, S., Pandey, K., Agarkar, S., Saikhedkar, N., Tathavadekar, M., Agrawal, I., Gundloori, R. V. N. & Ogale, S. Functionally Engineered Egg Albumen Gel for Quasi-Solid Dye Sensitized Solar Cells. ACS Sustainable Chem. Eng. 2014, 2, 2707-2714.
(28) Chang, J. W., Wang, C. G., Huang, C. Y., Tsai, T. D., Guo, T. F. & Wen, T. C. Chicken albumen dielectrics in organic field-effect transistors. Adv Mater 2011, 23, 4077-4081.
(29) Mine, Y. Recent advances in the understanding of egg white protein functionality. Trends Food Sci. Tech. 1995, 6, 225-232.
(30) Dong, P., Yan, J., Wang, J., Zhang, Y., Geng, C., Wei, T., Cong, P., Zhang, Y., Zeng, J., Tian, Y., Sun, L., Yan, Q., Li, J., Fan, S. & Qin, Z. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl. Phys. Lett. 2013, 102, 241113.
(31) Kneissl, M., Kolbe, T., Chua, C., Kueller, V., Lobo, N., Stellmach, J., Knauer, A., Rodriguez, H., Einfeldt, S., Yang, Z., Johnson, N. M. & Weyers, M. Advances in group III-nitride-based deep UV light-emitting diode technology. Semicond. Sci. Technol. 2011, 26, 014036.
(32) Asif Khan, M. AlGaN multiple quantum well based deep UV LEDs and their applications. Phys.Status Solidi A 2006, 203, 1764-1770.
(33) Simmons, J. G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34, 1793-1803.
(34) Caroli, C., Combescot, R., Nozieres, P. & Saint-James, D. Direct calculation of the tunneling current. J. Phys. C. 1971, 4, 916.
(35) Kargar, H., Ghazavi, H. & Darroudi, M. Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects. Ceram. Int. 2015, 41, 4123-4128.
(36) Rottländer, P., Hehn, M. & Schuhl, A. Determining the interfacial barrier height and its relation to tunnel magnetoresistance. Phys. Rev. B 2002, 65
(37) Frenkel, J. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Phys. Rev. 1938, 54, 647-648.
(38) Chen, H. M., Chen, Y. F., Lee, M. C. & Feng, M. S. Yellow luminescence in n-type GaN epitaxial films. Phys. Rev. B 1997, 56, 6942-6946.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50739-
dc.description.abstract摘要
在這篇論文中,我們探討了可拉伸隨機雷射和生物啟發性發光二極體(LED)的光電特性。透過物理上的分析和直覺,將半導體和生物材料特有的性質應用在隨機雷射和發光二極體上,展現了在未來能有多方面應用的潛力。我們的結果可分為兩個主題,總結如下:
1. 可拉伸隨機雷射與可調控同調迴圈
可拉伸性在將來的實際應用上是一個關鍵,包含在穿戴式工具,健康監測器,和機器皮膚的領域上。許多能應對巨大應變變形的光學、電學科技已經被開發。自從雷射被發現,他在我們生活中扮演重要的角色,特別是在可拉伸設備的發展上。由此,經由實驗設計和元件製造,我們展示了一個可拉伸的隨機雷射與可調控的同調迴圈。為了闡明運作原理,我們將氧化鋅奈米刷轉印在PDMS基板的頂部,形成可拉伸隨機雷射的材料。不同於傳統的氧化鋅奈米桿,氧化鋅奈米刷不僅僅是發光材料和雷射散射中心,更可以提供Fabry–Pérot共振腔來提高雷射的強度。可拉伸的PDMS基板提供了額外的自由度,讓我們能改變奈米鋅的密度、機械式地調控隨機雷射的同調迴圈。我們發現,雷射的頻數會隨著施加在PDMS基板上的應力增加而有所增加,其原因可由各種不同構造的同調迴圈在拉伸過程被製造來解釋。此樣品可拉伸高達30%並可承受高於100次的循環拉伸且保持雷射強度不減。這個結果對於將來人造智慧拉伸的裝置是一個重大的進展。
 
2. 高效能金屬/雞蛋白/半導體穿隧二極體
由於對環境友善、便宜、易取得且製造過程簡易,生物材料在光學和電學儀器的應用上吸引了極大的關注。在此篇論文中,我們使用了生物材料,雞蛋白,作為金屬-絕緣體-半導體(MIS)發光二極體(LED)的絕緣體,此樣品包含氮化鎵薄膜和金屬電極。在MIS LED樣品中,絕緣體作為能量障壁,使自由載子(電動或電子)累積在金屬絕緣體交界處並以此增加複合速率。有了更高的複合速率,LED裝置就能在更低的電流下運作,並提供更高的發光強度。和傳統的絕緣材料,如二氧化矽和氧化鎂相比,雞蛋白不僅僅能作為能量障壁,還提供的生物相容性的優點。除此之外,雞蛋白MIS LED樣品展現了良好的穩定性。研究發現,載子從金屬穿隧至氮化鎵薄膜的複合過程可由Frenkel-Poole效應解釋。源自各個不同官能基的能階可以有效的輔助穿隧效應並降低工作電壓。
zh_TW
dc.description.abstractAbstract
In this thesis, we investigate the optoelectronic properties of stretchable random laser and bio-inspired light emitting diodes (LEDs). By physical analysis and intuition, the fascinating properties of semiconductors and bio-materials are applied to random laser and LED devices, which shows the potentials for diverse application in the future. Our results are classified as two topics and summarized as the followings:
1. Stretchable Random Lasers with Tunable Coherent Loops
Stretchability represents a key feature for the emerging world of realistic applications in areas, including wearable gadgets, health monitors, and robotic skins. Many optical and electronic technologies that can respond to large strain deformations have been developed. Laser plays a very important role in our daily life since it was discovered, which is highly desirable for the development of stretchable devices. Herein, stretchable random lasers with tunable coherent loops are designed, fabricated, and demonstrated. To illustrate our working principle, the stretchable random laser is made possible by transferring unique ZnO nanobrushes on top of polydimethylsiloxane (PDMS) elastomer substrate. Apart from the traditional gain material of ZnO nanorods, ZnO nanobrushes were used as optical gain materials so they can serve as scattering centers and provide the Fabry–Pérot cavity to enhance laser action. The stretchable PDMS substrate gives the degree of freedom to mechanically tune the coherent loops of the random laser action by changing the density of ZnO nanobrushes. It is found that the number of laser modes increases with increasing external strain applied on the PDMS substrate due to the enhanced possibility for the formation of coherent loops. The device can be stretched by up to 30% strain and subjected to more than 100 cycles without loss in laser action. The result shows a major advance for the further development of man-made smart stretchable devices.
2. High-performance Metal/Albumen/Semiconductor Tunneling Light Emitting Devices
Biomaterials have attracted a great deal of attention for various kinds of devices due to their environmentally friendly and accessible processes. In this paper, chicken albumen is used as the insulator in metal-insulator-semiconductor (MIS) light emitting diodes (LEDs). The insulator in MIS LED devices functions as an energy barrier, which allows free carriers to accumulate and thus increases the recombination rate near the interface. With a higher recombination rate, the LED device can work under a lower injection current and provide stronger light emission intensity. Compared with traditional insulating materials, albumen not only plays the role of an energy barrier, but also holds a decided advantage of bio-comparable capability. In addition, albumen based MIS LED devices exhibit an excellent stability. It is found that charge carriers tunneling from metal to semiconductor thin films based on the Frenkel-Poole effect is responsible for the recombination process. The energy states arising from various functional groups containing in chicken albumen can effectively assist the tunneling process and reduce the working voltage. A proof-of-concept demonstration of our advanced approach has been performed for GaN and AlGaN deep UV LEDs.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:55:34Z (GMT). No. of bitstreams: 1
ntu-105-R03222051-1.pdf: 7300548 bytes, checksum: a09448cce9cd2c290d9a2d6f8aeae691 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
國立臺灣大學碩士學位論文 口試委員會審定書 I
摘要 II
Abstract IV
List of Publication VII
Contents VIII
List of Figures X
Chapter 1 Introduction 1
Reference 4
Chapter 2 Theoretical Background 5
2.1 Band Gap Structure 5
2.2 Photoluminescence (PL) 7
2.3 Electroluminescence (EL) 9
2.4 Recombination Processes 10
2.4.1 Radiative Recombination 10
2.4.2 Shockley–Read–Hall Recombination 11
2.4.3 Auger Recombination 12
2.5 Laser 14
2.6 Random Laser 18
2.6.1 Emission Properties 20
2.6.2 Mode Structure 23
2.6.3 Tunability 25
2.7 Fabry–Pérot Resonance 29
2.8 Electroluminescence of MIS Structure 30
2.8.1 Band Diagrams without Bias 30
2.8.2 Band Diagram of under Bias 33
2.8.3 Electroluminescence Mechanism 35
2.9 Tunneling Effects 37
2.9.1 Direct Tunneling 37
2.9.2 Fowler- Nordheim (F-N) Tunneling 38
2.9.3 Frenkel- Poole(F-P) Tunneling 39
Reference 41
Chapter 3 Experimental Details 44
3.1 Scanning Electron Microscopy (SEM) 44
3.2 X-ray Diffraction 45
3.3 Random Laser Measurement 48
Reference 49
Chapter 4 Stretchable Random Lasers with Tunable Coherent Loops 50
4.1 Introduction 50
4.2 Experiment Details 52
4.3 Results and Discussion 54
4.4 Summary 60
Reference 69
Chapter 5 High-performance Metal/Albumen/Semiconductor Tunneling Light Emitting Devices 73
5.1 Introduction 73
5.2 Experiment Details 75
5.3 Results and Discussion 76
5.4 Summary 80
Chapter 6 Conclusion 95
dc.language.isoen
dc.subject生物材料zh_TW
dc.subjectFabry–Perot共振zh_TW
dc.subject氧化鋅奈米結構zh_TW
dc.subject同調迴圈zh_TW
dc.subject隨機雷射zh_TW
dc.subject可調控zh_TW
dc.subject可拉伸zh_TW
dc.subjectFrenkel-Poole穿隧zh_TW
dc.subject雞蛋白zh_TW
dc.subjectp型氮化鎵zh_TW
dc.subject二極體zh_TW
dc.subject生物材料zh_TW
dc.subjectFabry–Perot共振zh_TW
dc.subject氧化鋅奈米結構zh_TW
dc.subject同調迴圈zh_TW
dc.subject可調控zh_TW
dc.subject可拉伸zh_TW
dc.subject隨機雷射zh_TW
dc.subjectFrenkel-Poole穿隧zh_TW
dc.subject雞蛋白zh_TW
dc.subjectp型氮化鎵zh_TW
dc.subject二極體zh_TW
dc.subjectFrenkel-Poole tunnelingen
dc.subjectstretchableen
dc.subjecttunableen
dc.subjectcoherent loopen
dc.subjectZnO nanostructureen
dc.subjectFabry–Perot resonanceen
dc.subjectbiomaterialen
dc.subjectlight emitting diodeen
dc.subjectp-GaNen
dc.subjectalbumenen
dc.subjectFrenkel-Poole tunnelingen
dc.subjectrandom laseren
dc.subjectstretchableen
dc.subjecttunableen
dc.subjectcoherent loopen
dc.subjectZnO nanostructureen
dc.subjectFabry–Perot resonanceen
dc.subjectbiomaterialen
dc.subjectlight emitting diodeen
dc.subjectp-GaNen
dc.subjectalbumenen
dc.subjectrandom laseren
dc.title生物材料穿隧發光二極體與可拉伸半導體隨機雷射之光電特性研究zh_TW
dc.titleOptoelectronics properties of tunneling light emitting devices and stretchable random lasers based on semiconductors and biomaterialsen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林泰源(Tai-Yuan Lin),許芳琪(Fang-Chi Hsu)
dc.subject.keyword隨機雷射,可拉伸,可調控,同調迴圈,氧化鋅奈米結構,Fabry–Perot共振,生物材料,二極體,p型氮化鎵,雞蛋白,Frenkel-Poole穿隧,zh_TW
dc.subject.keywordrandom laser,stretchable,tunable,coherent loop,ZnO nanostructure,Fabry–Perot resonance,biomaterial,light emitting diode,p-GaN,albumen,Frenkel-Poole tunneling,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201600932
dc.rights.note有償授權
dc.date.accepted2016-07-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
7.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved