Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50733
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧麗珍
dc.contributor.authorYao-Yu Jhengen
dc.contributor.author鄭耀瑜zh_TW
dc.date.accessioned2021-06-15T12:55:13Z-
dc.date.available2026-12-31
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-15
dc.identifier.citation1. Becker, K., C. Heilmann, and G. Peters, Coagulase-negative staphylococci. Clin Microbiol Rev, 2014. 27(4): p. 870-926.
2. Abdul Rahman, Z., et al., The significance of coagulase-negative staphylococci bacteremia in a low resource setting. J Infect Dev Ctries, 2013. 7(6): p. 448-52.
3. Tashiro, M., et al., Clinical significance of methicillin-resistant coagulase-negative staphylococci obtained from sterile specimens. Diagn Microbiol Infect Dis, 2015. 81(1): p. 71-5.
4. Krause, R., et al., Molecular typing of coagulase-negative staphylococcal blood and skin culture isolates to differentiate between bacteremia and contamination. Eur J Clin Microbiol Infect Dis, 2003. 22(12): p. 760-3.
5. Lai, C.C., et al., Changing aetiology of healthcare-associated bloodstream infections at three medical centres in Taiwan, 2000-2011. Epidemiol Infect, 2014. 142(10): p. 2180-5.
6. Hung, K.H., et al., Evaluation of discrepancies between oxacillin and cefoxitin susceptibility in coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis, 2011. 30(6): p. 785-8.
7. Hsueh, P.-R., C.-Y. Liu, and K.-T. Luh, Current status of antimicrobial resistance in Taiwan. Emerging infectious diseases, 2002. 8(2): p. 132-137.
8. Archer, G.L. and J. Johnston, Self-transmissible plasmids in staphylococci that encode resistance to aminoglycosides. Antimicrobial Agents and Chemotherapy, 1983. 24(1): p. 70-77.
9. Frost, L.S., et al., Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol, 2005. 3(9): p. 722-32.
10. Oliynyk, M., et al., Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol, 2007. 25(4): p. 447-53.
11. Poehlsgaard, J. and S. Douthwaite, The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol, 2005. 3(11): p. 870-81.
12. Gaynor, M. and A.S. Mankin, Macrolide antibiotics: binding site, mechanism of action, resistance. Current topics in medicinal chemistry, 2003. 3(9): p. 949-960.
13. WASHINGTON, J.A. and W.R. WILSON. Erythromycin: a microbial and clinical perspective after 30 years of clinical use (second of two parts). in Mayo Clinic Proceedings. 1985. Elsevier.
14. Gatermann, S.G., T. Koschinski, and S. Friedrich, Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect, 2007. 13(8): p. 777-81.
15. Cetin, E.S., et al., Macrolide–lincosamide–streptogramin B resistance phenotypes in clinical staphylococcal isolates. International journal of antimicrobial agents, 2008. 31(4): p. 364-368.
16. Li, L., et al., Macrolide-lincosamide-streptogramin resistance phenotypes and genotypes of coagulase-positive Staphylococcus aureus and coagulase-negative staphylococcal isolates from bovine mastitis. BMC Vet Res, 2015. 11: p. 168.
17. Weisblum, B., Erythromycin resistance by ribosome modification. Antimicrobial agents and chemotherapy, 1995. 39(3): p. 577.
18. Ramu, H., A. Mankin, and N. Vazquez-Laslop, Programmed drug-dependent ribosome stalling. Mol Microbiol, 2009. 71(4): p. 811-24.
19. Weisblum, B., Inducible resistance to macrolides, lincosamides and streptogramin type B antibiotics: the resistance phenotype, its biological diversity, and structural elements that regulate expression–a review. Journal of Antimicrobial Chemotherapy, 1985. 16(suppl A): p. 63-90.
20. Zmantar, T., et al., Detection of macrolide and disinfectant resistance genes in clinical Staphylococcus aureus and coagulase-negative staphylococci. BMC research notes, 2011. 4(1): p. 453.
21. Roberts, M.C., et al., Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrobial Agents and Chemotherapy, 1999. 43(12): p. 2823-2830.
22. Thakker-Varia, S., et al., Molecular epidemiology of macrolides-lincosamides-streptogramin B resistance in Staphylococcus aureus and coagulase-negative staphylococci. Antimicrobial agents and chemotherapy, 1987. 31(5): p. 735-743.
23. Weisblum, B., et al., Erythromycin-inducible resistance in Staphylococcus aureus: requirements for induction. Journal of bacteriology, 1971. 106(3): p. 835-847.
24. Hiramatsu, K., et al., Genomic basis for methicillin resistance in Staphylococcus aureus. Infection & chemotherapy, 2013. 45(2): p. 117-136.
25. Novick, R., et al., Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid, 1979. 2(1): p. 109-129.
26. Horinouchi, S. and B. Weisblum, Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. Journal of Bacteriology, 1982. 150(2): p. 804-814.
27. Westh, H., et al., erm genes in erythromycin‐resistant Staphylococcus aureus and coagulase‐negative staphylococci. APMIS, 1995. 103(1‐6): p. 225-232.
28. Schmitz, F.-J., et al., Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. Journal of Antimicrobial Chemotherapy, 2000. 45(6): p. 891-894.
29. Wang, C.-C., et al., Epidemiological typing of community-acquired methicillin-resistant Staphylococcus aureus isolates from children in Taiwan. Clinical infectious diseases, 2004. 39(4): p. 481-487.
30. Tannock, G.W., et al., Molecular characterization of a plasmid-borne (pGT633) erythromycin resistance determinant (ermGT) from Lactobacillus reuteri 100-63. Plasmid, 1994. 31(1): p. 60-71.
31. Tsai, J.C., et al., The erm(T) gene is flanked by IS1216V in inducible erythromycin-resistant Streptococcus gallolyticus subsp. pasteurianus. Antimicrob Agents Chemother, 2005. 49(10): p. 4347-50.
32. Moon, D.C., et al., Identification of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates in Korea and Molecular Comparison Between Isolates from Animal Carcasses and Slaughterhouse Workers. Foodborne pathogens and disease, 2015. 12(4): p. 327-334.
33. Li, G., et al., Staphylococcus aureus ST6-t701 Isolates from Food-Poisoning Outbreaks (2006–2013) in Xi'an, China. Foodborne pathogens and disease, 2015. 12(3): p. 203-206.
34. Gomez-Sanz, E., et al., Chromosomal integration of the novel plasmid pUR3912 from methicillin-susceptible Staphylococcus aureus ST398 of human origin. Clin Microbiol Infect, 2013. 19(11): p. E519-22.
35. Rahman, A., et al., Methicillin-resistant coagulase-negative staphylococci (MRCoNS) by disk diffusion method. Mymensingh medical journal: MMJ, 2013. 22(2): p. 229-231.
36. Malachowa, N. and F.R. DeLeo, Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci, 2010. 67(18): p. 3057-71.
37. Hauschild, T. and S. Stepanović, Identification of Staphylococcus spp. by PCR-restriction fragment length polymorphism analysis of dnaJ gene. Journal of clinical microbiology, 2008. 46(12): p. 3875-3879.
38. Cockerill, F.R., Clinical, and L.S. Institute, Performance standards for antimicrobial susceptibility testing: twenty-third informational supplement;[... provides updated tables for... M02-A11, M07-A9, and M11-A8]. 2013: National Committee for Clinical Laboratory Standards.
39. Zhu, X.Y., et al., 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology, 2002. 68(1): p. 124-137.
40. Kado, C., amp, and S. Liu, Rapid procedure for detection and isolation of large and small plasmids. Journal of bacteriology, 1981. 145(3): p. 1365-1373.
41. Putnam, S.D., et al., Worldwide summary of telavancin spectrum and potency against Gram-positive pathogens: 2007 to 2008 surveillance results. Diagnostic microbiology and infectious disease, 2010. 67(4): p. 359-368.
42. Barton, B.M., G.P. Harding, and A.J. Zuccarelli, A general method for detecting and sizing large plasmids. Analytical biochemistry, 1995. 226(2): p. 235-240.
43. Shah, M.M., et al., dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. International journal of systematic and evolutionary microbiology, 2007. 57(1): p. 25-30.
44. Shin, J.H., et al., Identification of coagulase-negative staphylococci isolated from continuous ambulatory peritoneal dialysis fluid using 16S ribosomal RNA, tuf, and SodA gene sequencing. Peritoneal Dialysis International, 2011. 31(3): p. 340-346.
45. Liu, D., et al., Use of a putative transcriptional regulator gene as target for specific identification of Staphylococcus epidermidis. Letters in applied microbiology, 2006. 43(3): p. 325-330.
46. Chang, S.-C., et al., Macrolides resistance of common bacteria isolated from Taiwan. Diagnostic microbiology and infectious disease, 1995. 23(4): p. 147-154.
47. Flamm, R.K., et al., Linezolid Surveillance Results for the United States (LEADER Surveillance Program 2011). Antimicrobial agents and chemotherapy, 2012: p. AAC. 02112-12.
48. ZHANG, Y.-c., et al., Meticillin Resistance and Glycopeptide Resistance in Clinical Coagulase-negative Staphylococci: Detection and Analysis [J]. Chinese Journal of Nosocomiology, 2007. 9: p. 054.
49. Lina, G., et al., Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrobial Agents and Chemotherapy, 1999. 43(5): p. 1062-1066.
50. 萬采玟, 甲氧西林敏感金黃色葡萄球菌之抗紅黴素基因結構分析. 國立台灣大學,臺北市。.
51. Sousa, M., et al., Genetic Diversity and Antibiotic Resistance Among Coagulase-Negative Staphylococci Recovered from Birds of Prey in Portugal. Microbial Drug Resistance, 2016.
52. Miragaia, M., et al., Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. Journal of bacteriology, 2007. 189(6): p. 2540-2552.
53. Deplano, A., et al., National surveillance of Staphylococcus epidermidis recovered from bloodstream infections in Belgian hospitals. Journal of Antimicrobial Chemotherapy, 2016. 71(7): p. 1815-1819.
54. Haznedaroğlu, T., et al., Testing for induction of clindamycin resistance in erythromycin-resistant isolates of coagulase negative staphylococci and Staphylococcus aureus. Tıp Araştırmaları Dergisi, 2011. 9(2).
55. Gómez-Sanz, E., et al., Analysis of a novel erm (T)-and cadDX-carrying plasmid from methicillin-susceptible Staphylococcus aureus ST398-t571 of human origin. Journal of Antimicrobial Chemotherapy, 2012: p. dks411.
56. Palmieri, C., et al., Interspecies mobilization of an erm (T)-carrying plasmid of Streptococcus dysgalactiae subsp. equisimilis by a coresident ICE of the ICESa2603 family. Journal of Antimicrobial Chemotherapy, 2012: p. dks352.
57. Woodbury, R.L., et al., Plasmid-borne erm (T) from invasive, macrolide-resistant Streptococcus pyogenes strains. Antimicrobial agents and chemotherapy, 2008. 52(3): p. 1140-1143.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50733-
dc.description.abstract凝固酶陰性葡萄球菌為人體皮膚黏膜正常菌叢。近年來凝固酶陰性葡萄球菌已成為血液檢體常見的病原菌,其重要性與菌血症、血管內裝置或導管造成的院內感染有關。凝固酶陰性葡萄球菌經常對許多抗生素具有抗藥性,如紅黴素,在台灣很少有關於臨床凝固酶陰性葡萄球菌之紅黴素的研究,很有可能解釋為何金黃色葡萄球菌 (Staphylococcus aureus)有高紅黴素抗藥的原因,因此選擇紅黴素來研究凝固酶陰性葡萄球菌抗藥基因的分布。本研究挑選自2012至2014年臺大醫院細菌室415株由VITEK2鑑定為凝固酶陰性葡萄球菌的臨床菌株,經由分子方法鑑定後共有401株凝固酶陰性葡萄球菌作為實驗菌株。首先分析凝固酶陰性葡萄球菌對於紅黴素之抗藥表現型與抗藥基因之盛行率,以紙錠擴散試驗區分MLSB抗藥表現型,利用agar dilution確認紅黴素對菌株的最小抑制濃度,使用PCR分析紅黴素之抗藥基因。結果顯示三年的凝固酶陰性葡萄球菌中有267株具有紅黴素抗藥性,常見的抗藥基因為ermC (37.1 %)和msrA/B (34.8 %),抗藥表現型主要為cMLSB (55.4 %),也發現抗藥基因盛行率在各菌種之間有特定分布,S. captis主要以攜帶ermA基因型 (25/35, 71.4 %)、S. epidermidis較多攜帶ermC基因型 (79/157, 50.3 %)、S. haemolyticus攜帶msrAB (30/53, 56.6 %)。接下來探討抗藥基因與MIC關聯,大多數攜帶erm系列基因的菌株對於紅黴素的MIC值都很高 (大於256 μg/ml),攜帶msrA/B基因型MIC範圍介於16 μg/ml至128 μg/ml。此外在S. capitis和S. epidermidis共有6株菌株發現攜帶罕見基因ermT,目前關於ermT基因在凝固酶陰性葡萄球菌的文獻非常少,且近年報導多發現在金黃色葡萄球菌。為了深入探討此基因,將6株攜帶ermT基因的菌株進行southern Blot和S1-PFGE,發現ermT基因均被質體DNA攜帶且為單一copy數目,挑選菌種不同的兩株NTUH-4483和NTUH-8031399透過self-ligation與定序分析攜帶ermT質體結構,發現兩者質體相似且為約5kb大小的質體結構,經資料庫比對後發現與MSSA ST398-t571攜帶質體pU3912 (GenBank: HE805623)的結構不同,可能為尚未發表的結構。zh_TW
dc.description.abstractCoagulase-negative staphylococci (CoNS) are the main species of normal skin flora. Recently, CoNS have been recognized as typical opportunists in nosocomial infection. They are particularly associated with the use of indwelling or implanted foreign bodies. CoNS often have multiple antibiotic resistances, like erythromycin. The study about clinical erythromycin resistance of CoNS in Taiwan is rare. It might explain the higher frequency of erythromycin resistance in Staphylococcus aureus. We analyzed the erythromycin resistance genes of CoNS to investigate the prevalence. In our study, 401 clinical isolates identified as CoNS were collected from NTUH from 2012 to 2014. We analyzed the MLSB resistance phenotype by double disk diffusion test and erythromycin resistance genes by PCR. 267 (66.6 %) isolates were resistant to erythromycin. Among the erythromycin resistance genes, both ermC and msrA/B were the predominant, and the cMLSB was the major MLSB phenotype. We also found that some specific determinants in species. Most Staphylococcus capitis carried ermA Staphylococcus epidermidis carried ermC and Staphylococcus haemolyticus carried msrA/B. To investigate the relationship with resistance genes, we determined the MIC by agar dilution. High level resistance to erythromycin was found in erm-carried isolates (>256 μg/ml) whereas low level resistance to erythromycin in msrA/B-carried isolates. Furthermore, a total of six clinical isolates in S. capitis and S. epidermidis carried the unusual ermT genes. The ermT gens was seldom reported in CoNS but associated with S. aureus recently. To investigate this gene, using southern blot and S1-nuclease PFGE to probe the location of ermT gene. We found the ermT genes were carried by plasmid and only one copy number. Then, select two isolates NTUH-4483 and NTUH-8031399 to analysis the structure of ermT-carried plasmid by self-ligation and Sanger sequence. Both the structure of plasmid were similar 5 kb size. Comparing with NCBI database, the structure of ermT-carreid plasmid was different to pUR3912 carreied by MSSA ST398-t571 (GenBank: HE805623). The 5kb ermT-carried plasmid might be unpublished plasmid structure.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:55:13Z (GMT). No. of bitstreams: 1
ntu-105-R03424023-1.pdf: 2554104 bytes, checksum: 3d853970e97cf98c5795c2b2c1d37a19 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
英文摘要 II
中文摘要 IV
目錄 V
圖目錄 VIII
表目錄 IX
第一章、前言 1
1.1凝固酶陰性葡萄球菌簡介 (Coagulase-negative staphylococci, CoNS) 2
1.2紅黴素 (Erythromycin) 2
1.3 Macrolide–Lincosamide-Streptogramin B抗藥機制 2
1.4常見紅黴素抗藥基因erm攜帶方式 3
1.5 ermT基因的攜帶方式 3
1.6凝固酶陰性葡萄球菌的大環內酯 (Macrolide)與Methicillin抗藥之關聯 5
第二章、材料與方法 6
2.1本實驗用菌株與參考菌株 6
2.2細菌菌株培養與保存 6
2.3染色體核酸萃取 (Chromosomal DNA extraction) 6
2.4聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 8
2.5細菌菌種鑑定 9
2.6抗生素藥敏性試驗–紙錠擴散試驗 (Double Disk diffusion Test) 10
2.7抗生素藥敏性試驗–最小抑菌濃度 (Minimum inhibitory concentration) 11
2.8 PCR產物基因純化 (PCR product gene clean) 12
2.9 16S核醣體核酸鑑定 (16S rRNA) 13
2.10質體核酸萃取 (plasmid DNA extraction) 13
2.11南方墨點法 (Southern Blot) 14
2.12 Inverse PCR 17
2.13 S1 nuclease-pulsed field gel electrophoresis (S1 nuclease-PFGE) 19
第三章、結果 22
3.1篩選臨床菌株和鑑定菌種之比較 22
3.2凝固酶陰性葡萄球菌的紅黴素抗藥比例 22
3.3凝固酶陰性葡萄球菌的紅黴素抗藥基因分布 23
3.4 Methicillin抗藥與紅黴素抗藥之間的關聯 23
3.5凝固酶陰性葡萄球菌的SCCmec與紅黴素抗藥基因關聯 24
3.6紅黴素抗藥基因與最小抑菌濃度MIC值關聯 24
3.7 MLST分析攜帶ermT菌株的Sequence type 25
3.8利用Southern Blot確認菌株攜帶ermT基因 25
3.9利用S1-PFGE探討菌株攜帶ermT的方式 26
3.10分析攜帶ermT的質體DNA基因結構 26
3.11限制酶評估NTUH-4483與 NTUH-8031399攜帶ermT的質體DNA大小 26
3.12 PCR評估NTUH-4483與NTUH-8031399攜帶ermT的質體DNA大小 27
3.13以PCR mapping分析攜帶ermT的質體DNA基因結構 27
3.14利用不同限制酶與Southern blot估計NTUH-2831-1和NTUH-1044958攜帶ermT的質體DNA大小 27
3.15 ermT基因攜帶菌株之PFGE結果 28
第四章、討論 29
4.1 凝固酶陰性葡萄球之菌種鑑定 29
4.2 凝固酶陰性葡萄球的紅黴素抗藥情形 29
4.3 凝固酶陰性葡萄球菌之紅黴素抗藥基因分析 30
4.4 紅黴素抗藥基因與MIC值關聯性 31
4.5 凝固酶陰性葡萄球菌之ermT基因分布 31
4.6 分子分型分析4株ermT攜帶之S. epidermidis演化關係之比較 31
4.7 臨床凝固酶陰性葡萄球菌主要為cMLSB表現型 32
4.8 Methicillin抗藥與紅黴素抗藥之間的關聯 32
4.9 攜帶ermT基因的質體DNA結構 33
4.10 兩種葡萄球菌攜帶類似的ermT的質體DNA結構 33
4.11 凝固酶陰性葡萄球菌之抗紅黴素基因結果與2000-2012年台大醫院MSSA的紅黴素抗藥基因之比較 34
第五章、附圖 35
第六章、附表 44
參考文獻 57
dc.language.isozh-TW
dc.subjectermTzh_TW
dc.subjectCoNSzh_TW
dc.subjecterythromycinzh_TW
dc.subjectMLSBzh_TW
dc.subjectermCzh_TW
dc.subjectmsrA/Bzh_TW
dc.subjectermTzh_TW
dc.subjectCoNSzh_TW
dc.subjecterythromycinzh_TW
dc.subjectMLSBzh_TW
dc.subjectermCzh_TW
dc.subjectmsrA/Bzh_TW
dc.title凝固酶陰性葡萄球菌之抗紅黴素基因分析zh_TW
dc.titleErythromycin resistance genes in coagulase-negative staphylococci clinical isolatesen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖淑貞,邱浩傑,洪薇鈞
dc.subject.keywordCoNS,erythromycin,MLSB,ermC,msrA/B,ermT,zh_TW
dc.relation.page60
dc.identifier.doi10.6342/NTU201600957
dc.rights.note有償授權
dc.date.accepted2016-07-18
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved