請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50724完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳振中(Jerry Chun Chung Chan) | |
| dc.contributor.author | Yu-Sheng Cheng | en |
| dc.contributor.author | 鄭友勝 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:54:43Z | - |
| dc.date.available | 2019-07-26 | |
| dc.date.copyright | 2016-07-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-18 | |
| dc.identifier.citation | 第一章
1. Ramírez-Alvarado, M., Merkel, J. S. & Regan, L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc. Natl. Acad. Sci. 97, 8979–8984 (2000). 2. Rambaran, R. N. & Serpell, L. C. Amyloid fibrils. Prion 2, 112–117 (2008). 3. Eanes, E. D. & Glenner, G. G. X-Ray Diffraction Studies on Amyloid Filaments. J. Histochem. Cytochem. 16, 673–677 (1968). 4. Serpell, L. C., Benson, M., Liepnieks, J. J. & Fraser, P. E. Structural analyses of fibrinogen amyloid fibrils. Amyloid 14, 199–203 (2007). 5. Shirahama, T. & Cohen, A. S. HIGH-RESOLUTION ELECTRON MICROSCOPIC ANALYSIS OF THE AMYLOID FIBRIL. J. Cell Biol. 33, 679–708 (1967). 6. Biancalana, M. & Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta BBA - Proteins Proteomics 1804, 1405–1412 (2010). 7. Eisenberg, D. & Jucker, M. The amyloid state of proteins in human diseases. Cell 148, 1188–1203 (2012). 8. Chiti, F. & Dobson, C. M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem. 75, 333–366 (2006). 9. Berchtold, N. C. & Cotman, C. W. Evolution in the Conceptualization of Dementia and Alzheimer’s Disease: Greco-Roman Period to the 1960s. Neurobiol. Aging 19, 173–189 (1998). 10. Selkoe, D. J. Alzheimer’s Disease: Genes, Proteins, and Therapy. Physiol. Rev. 81, 741–766 (2001). 11. Maurer, K., Volk, S. & Gerbaldo, H. Auguste D and Alzheimer’s disease. The Lancet 349, 1546–1549 (1997). 12. Aging, N. I. on. Scientific Images. National Institute on Aging (2011). Available at: https://www.nia.nih.gov/alzheimers/scientific-images. (Accessed: 2nd April 2016) 13. Selkoe, D. J. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol. 8, 447–453 (1998). 14. Merz, P. A. et al. Ultrastructural morphology of amyloid fibrils from neuritic and amyloid plaques. Acta Neuropathol. (Berl.) 60, 113–124 (1983). 15. Shibayama, H. & Kitoh, J. Electron microscopic structure of the alzheimer’s neurofibrillary changes in case of atypical senile dementia. Acta Neuropathol. (Berl.) 41, 229–234 (1978). 16. Glenner, G. G. & Wong, C. W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984). 17. Masters, C. L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U. S. A. 82, 4245–4249 (1985). 18. Selkoe, D. J., Abraham, C. R., Podlisny, M. B. & Duffy, L. K. Isolation of Low-Molecular-Weight Proteins from Amyloid Plaque Fibers in Alzheimer’s Disease. J. Neurochem. 46, 1820–1834 (1986). 19. Selkoe, D. J. Normal and Abnormal Biology of the beta-Amyloid Precursor Protein. Annu. Rev. Neurosci. 17, 489–517 (1994). 20. O’Brien, R. J. & Wong, P. C. Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annu. Rev. Neurosci. 34, 185–204 (2011). 21. Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992). 22. Hardy, J. & Selkoe, D. J. The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science 297, 353–356 (2002). 23. Selkoe, D. J. Alzheimer Disease: Mechanistic Understanding Predicts Novel Therapies. Ann. Intern. Med. 140, 627–638 (2004). 24. Alexandrescu, A. T. Amyloid accomplices and enforcers. Protein Sci. 14, 1–12 (2005). 25. Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A. & Teplow, D. B. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. 93, 1125–1129 (1996). 26. Gillam, J. E. & MacPhee, C. E. Modelling amyloid fibril formation kinetics: mechanisms of nucleation and growth. J. Phys. Condens. Matter 25, 373101 (2013). 27. Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl. Acad. Sci. 111, 9384–9389 (2014). 28. Walsh, D. M. et al. Amyloid β-Protein Fibrillogenesis STRUCTURE AND BIOLOGICAL ACTIVITY OF PROTOFIBRILLAR INTERMEDIATES. J. Biol. Chem. 274, 25945–25952 (1999). 29. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012). 30. Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112 (2007). 31. Chimon, S. et al. Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s beta-amyloid. Nat. Struct. Mol. Biol. 14, 1157–1164 (2007). 32. Broersen, K., Rousseau, F. & Schymkowitz, J. The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer’s disease: oligomer size or conformation? Alzheimers Res. Ther. 2, 12 (2010). 33. Li, H. et al. in Encyclopedia of Analytical Chemistry (John Wiley & Sons, Ltd, 2006). 34. Perchiacca, J. M., Ladiwala, A. R. A., Bhattacharya, M. & Tessier, P. M. Structure-based design of conformation- and sequence-specific antibodies against amyloid β. Proc. Natl. Acad. Sci. 109, 84–89 (2012). 35. Cerf, E. et al. Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem. J. 421, 415–423 (2009). 36. Kayed, R. et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener. 2, 18 (2007). 37. Sarroukh, R. et al. Transformation of amyloid β(1–40) oligomers into fibrils is characterized by a major change in secondary structure. Cell. Mol. Life Sci. 68, 1429–1438 (2010). 38. Paravastu, A. K., Leapman, R. D., Yau, W.-M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl. Acad. Sci. 105, 18349–18354 (2008). 39. Ahmed, M. et al. Structural conversion of neurotoxic amyloid-β1-42 oligomers to fibrils. Nat. Struct. Mol. Biol. 17, 561–567 (2010). 40. Jungbauer, L. M., Yu, C., Laxton, K. J. & LaDu, M. J. Preparation of fluorescently-labeled amyloid-beta peptide assemblies: the effect of fluorophore conjugation on structure and function. J. Mol. Recognit. 22, 403–413 (2009). 41. Hamley, I. W. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem. Rev. 112, 5147–5192 (2012). 42. Lambert, M. P. et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. 95, 6448–6453 (1998). 43. Wang, X., Perry, G., Smith, M. A. & Zhu, X. Amyloid-β-Derived Diffusible Ligands Cause Impaired Axonal Transport of Mitochondria in Neurons. Neurodegener. Dis. 7, 56–59 (2010). 44. Kayed, R. et al. Annular Protofibrils Are a Structurally and Functionally Distinct Type of Amyloid Oligomer. J. Biol. Chem. 284, 4230–4237 (2009). 45. Lasagna-Reeves, C. A., Glabe, C. G. & Kayed, R. Amyloid-β Annular Protofibrils Evade Fibrillar Fate in Alzheimer Disease Brain. J. Biol. Chem. 286, 22122–22130 (2011). 46. Harper, J. D., Wong, S. S., Lieber, C. M. & Lansbury, P. T. Assembly of Aβ Amyloid Protofibrils: An in Vitro Model for a Possible Early Event in Alzheimer’s Disease. Biochemistry (Mosc.) 38, 8972–8980 (1999). 47. Hartley, D. M. et al. Protofibrillar Intermediates of Amyloid β-Protein Induce Acute Electrophysiological Changes and Progressive Neurotoxicity in Cortical Neurons. J. Neurosci. 19, 8876–8884 (1999). 48. Lord, A. et al. An amyloid-β protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 36, 425–434 (2009). 49. Glabe, C. G. Conformation-dependent antibodies target diseases of protein misfolding. Trends Biochem. Sci. 29, 542–547 (2004). 50. Miller, L. M. et al. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. J. Struct. Biol. 155, 30–37 (2006). 51. Hoshi, M. et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl. Acad. Sci. 100, 6370–6375 (2003). 52. Noguchi, A. et al. Isolation and Characterization of Patient-derived, Toxic, High Mass Amyloid β-Protein (Aβ) Assembly from Alzheimer Disease Brains. J. Biol. Chem. 284, 32895–32905 (2009). 53. Yu, L. et al. Structural Characterization of a Soluble Amyloid β-Peptide Oligomer. Biochemistry (Mosc.) 48, 1870–1877 (2009). 54. Nimmrich, V. et al. Amyloid β Oligomers (Aβ1–42 Globulomer) Suppress Spontaneous Synaptic Activity by Inhibition of P/Q-Type Calcium Currents. J. Neurosci. 28, 788–797 (2008). 55. Barghorn, S. et al. Globular amyloid β-peptide1−42 oligomer − a homogenous and stable neuropathological protein in Alzheimer’s disease. J. Neurochem. 95, 834–847 (2005). 56. Itkin, A. et al. Calcium Ions Promote Formation of Amyloid β-Peptide (1–40) Oligomers Causally Implicated in Neuronal Toxicity of Alzheimer’s Disease. PLOS ONE 6, e18250 (2011). 57. Chen, W.-T., Liao, Y.-H., Yu, H.-M., Cheng, I. H. & Chen, Y.-R. Distinct Effects of Zn2+, Cu2+, Fe3+, and Al3+ on Amyloid-β Stability, Oligomerization, and Aggregation AMYLOID-β DESTABILIZATION PROMOTES ANNULAR PROTOFIBRIL FORMATION. J. Biol. Chem. 286, 9646–9656 (2011). 58. Smith, T. J., Stains, C. I., Meyer, S. C. & Ghosh, I. Inhibition of β-Amyloid Fibrillization by Directed Evolution of a β-Sheet Presenting Miniature Protein. J. Am. Chem. Soc. 128, 14456–14457 (2006). 59. Scheidt, H. A., Morgado, I. & Huster, D. Solid-state NMR Reveals a Close Structural Relationship between Amyloid-β Protofibrils and Oligomers. J. Biol. Chem. 287, 22822–22826 (2012). 60. Yang, C.-I. et al. Aggregation of Beta-Amyloid Peptides Proximal to Zwitterionic Lipid Bilayers. Chem. – Asian J. 10, 1967–1971 (2015). 61. Mukherjee, S., Chowdhury, P. & Gai, F. Effect of Dehydration on the Aggregation Kinetics of Two Amyloid Peptides. J. Phys. Chem. B 113, 531–535 (2009). 62. Pileni, M.-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat. Mater. 2, 145–150 (2003). 63. Lemyre, J.-L. & Ritcey, A. M. Synthesis of Lanthanide Fluoride Nanoparticles of Varying Shape and Size. Chem. Mater. 17, 3040–3043 (2005). 64. Uskoković, V. & Drofenik, M. Synthesis of materials within reverse micelles. Surf. Rev. Lett. 12, 239–277 (2005). 65. Miyake, Y. Enzymatic reaction in water-in-oil microemulsions. Colloids Surf. Physicochem. Eng. Asp. 109, 255–262 (1996). 66. Müller-Goymann, C. C. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur. J. Pharm. Biopharm. 58, 343–356 (2004). 67. Lawrence, M. J. & Rees, G. D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 64, Supplement, 175–193 (2012). 68. Pires, M. J. & Cabral, J. M. S. Liquid-Liquid Extraction of a Recombinant Protein with a Reverse Micelle Phase. Biotechnol. Prog. 9, 647–650 (1993). 69. Krishna, S. H., Srinivas, N. D., Raghavarao, K. S. M. S. & Karanth, N. G. in History and Trends in Bioprocessing and Biotransformation (eds. Dutta, N. N. et al.) 119–183 (Springer Berlin Heidelberg, 2002). 70. Van Horn, W. D., Ogilvie, M. E. & Flynn, P. F. Reverse Micelle Encapsulation as a Model for Intracellular Crowding. J. Am. Chem. Soc. 131, 8030–8039 (2009). 71. Hartley, G. S. Aqueous solutions of paraffin-chain salts; a study in micelle formation,. (Hermann & cie, 1936). 72. Matzke, S. F., Creagh, A. L., Haynes, C. A., Prausnitz, J. M. & Blanch, H. W. Mechanisms of protein solubilization in reverse micelles. Biotechnol. Bioeng. 40, 91–102 (1992). 73. LIU, Y., DONG, X. & SUN, Y. New Development of Reverse Micelles and Applications in Protein Separation and Refolding. Chin. J. Chem. Eng. 16, 949–955 (2008). 74. Yeung, P. S.-W. & Axelsen, P. H. The Crowded Environment of a Reverse Micelle Induces the Formation of β-Strand Seed Structures for Nucleating Amyloid Fibril Formation. J. Am. Chem. Soc. 134, 6061–6063 (2012). 75. Pires, M. J. & Cabral, J. M. S. Liquid-liquid extraction of a recombinant protein with a reverse micelle phase. Biotechnol. Prog. 9, 647–650 (1993). 76. Ayala, G. A., Kamat, S., Beckman, E. J. & Russell, A. J. Protein extraction and activity in reverse micelles of a nonionic detergent. Biotechnol. Bioeng. 39, 806–814 (1992). 77. Ichikawa, S. et al. Formation of biocompatible reversed micellar systems using phospholipids. Biochem. Eng. J. 6, 193–199 (2000). 78. Goto, M., Ishikawa, Y., Ono, T., Nakashio, F. & Hatton, T. A. Extraction and Activity of Chymotrypsin Using AOT−DOLPA Mixed Reversed Micellar Systems. Biotechnol. Prog. 14, 729–734 (1998). 第二章 1. Fields, G. B. & Noble, R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35, 161–214 (1990). 2. Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989). 3. Electrospray ionization. Available at: http://america.pink/electrospray-ionization_1404975.html. (Accessed: 7th May 2016) 4. Zenobi, R. & Knochenmuss, R. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17, 337–366 (1998). 5. Analytical methods. Available at: http://www.atdbio.com/content/8/Analytical-methods. (Accessed: 7th May 2016) 6. Jan, A., Hartley, D. M. & Lashuel, H. A. Preparation and characterization of toxic Aβ aggregates for structural and functional studies in Alzheimer’s disease research. Nat. Protoc. 5, 1186–1209 (2010). 7. Stoscheck, C. M. in Methods in Enzymology (ed. Deutscher, M. P.) 182, 50–68 (Academic Press, 1990). 8. Beer–Lambert law. Wikipedia, the free encyclopedia (2016). 9. Smith, P. K. et al. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85 (1985). 10. Gill, S. C. & von Hippel, P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989). 11. Stine, W. B., Dahlgren, K. N., Krafft, G. A. & LaDu, M. J. In Vitro Characterization of Conditions for Amyloid-β Peptide Oligomerization and Fibrillogenesis. J. Biol. Chem. 278, 11612–11622 (2003). 12. Colvin, M. T. et al. High Resolution Structural Characterization of Aβ42 Amyloid Fibrils by Magic Angle Spinning NMR. J. Am. Chem. Soc. 137, 7509–7518 (2015). 13. Macao, B. et al. Recombinant amyloid beta-peptide production by coexpression with an affibody ligand. BMC Biotechnol. 8, 82 (2008). 14. Naiki, H. & Gejyo, F. in (ed. Enzymology, B.-M. in) 309, 305–318 (Academic Press, 1999). 15. Ruasse, M.-F. et al. Organic reactions in micro-organized media: Why and how? Pure Appl. Chem. 69, (1997). 16. De, T. K. & Maitra, A. Solution behaviour of Aerosol OT in non-polar solvents. Adv. Colloid Interface Sci. 59, 95–193 (1995). 17. Tamamushi, P. D. B. & Watanabe, D. N. The formation of molecular aggregation structures in ternary system: Aerosol OT/water/iso-octane. Colloid Polym. Sci. 258, 174–178 (1980). 18. Abuin, E., Lissi, E. & Jara, P. EFFECT OF THE ORGANIC SOLVENT ON THE INTERFACIAL MICROPOLARITY OF AOT -WATER REVERSE MICELLES. J. Chil. Chem. Soc. 52, 1082–1087 (2007). 19. Fayer, M. D. Water in a crowd. Physiol. Bethesda Md 26, 381–392 (2011). 20. Fenn, E. E., Wong, D. B. & Fayer, M. D. Water dynamics at neutral and ionic interfaces. Proc. Natl. Acad. Sci. 106, 15243–15248 (2009). 21. Fenn, E. E., Wong, D. B., Giammanco, C. H. & Fayer, M. D. Dynamics of Water at the Interface in Reverse Micelles: Measurements of Spectral Diffusion with Two-Dimensional Infrared Vibrational Echoes. J. Phys. Chem. B 115, 11658–11670 (2011). 22. Moilanen, D. E., Fenn, E. E., Wong, D. & Fayer, M. D. Water dynamics in large and small reverse micelles: From two ensembles to collective behavior. J. Chem. Phys. 131, 14704 (2009). 23. Vasquez, V. R., Williams, B. C. & Graeve, O. A. Stability and Comparative Analysis of AOT/Water/Isooctane Reverse Micelle System Using Dynamic Light Scattering and Molecular Dynamics. J. Phys. Chem. B 115, 2979–2987 (2011). 24. Spehr, T. L., Frick, B., Zamponi, M. & Stühn, B. Dynamics of water confined to reverse AOT micelles. Soft Matter 7, 5745–5755 (2011). 25. Piletic, I. R., Moilanen, D. E., Spry, D. B., Levinger, N. E. & Fayer, M. D. Testing the Core/Shell Model of Nanoconfined Water in Reverse Micelles Using Linear and Nonlinear IR Spectroscopy. J. Phys. Chem. A 110, 4985–4999 (2006). 26. Matzke, S. F., Creagh, A. L., Haynes, C. A., Prausnitz, J. M. & Blanch, H. W. Mechanisms of protein solubilization in reverse micelles. Biotechnol. Bioeng. 40, 91–102 (1992). 27. Yeung, P. S.-W. & Axelsen, P. H. The Crowded Environment of a Reverse Micelle Induces the Formation of β-Strand Seed Structures for Nucleating Amyloid Fibril Formation. J. Am. Chem. Soc. 134, 6061–6063 (2012). 28. Rydberg, J. Solvent Extraction Principles and Practice, Revised and Expanded. (CRC Press, 2004). 29. LeVine, H. Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. Publ. Protein Soc. 2, 404–410 (1993). 30. Biancalana, M. & Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta BBA - Proteins Proteomics 1804, 1405–1412 (2010). 31. LeVine III, H. in Methods in Enzymology (ed. Ronald Wetzel) Volume 309, 274–284 (Academic Press, 1999). 32. Mitsionis, A. I. & Vaimakis, T. C. Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods. Chem. Phys. Lett. 547, 110–113 (2012). 33. Jarudilokkul, S., Poppenborg, L. H. & Stuckey, D. C. Backward extraction of reverse micellar encapsulated proteins using a counterionic surfactant. Biotechnol. Bioeng. 62, 593–601 (1999). 34. Cheng, S. I. & Stuckey, D. C. Protein recovery from surfactant precipitation. Biotechnol. Prog. 27, 1614–1622 (2011). 35. CIC bioGUNE Electron Microscopy Platform Service - Specimen Preparation. Available at: http://personal.cicbiogune.es/dcarton/specimen.html. (Accessed: 8th May 2016) 36. PLASMA CLEANING - JESAGI HANKOOK. Available at: http://jesagi.en.ecplaza.net/plasma-cleaning--68223-111807.html. (Accessed: 8th May 2016) 37. Dynamic light scattering. Wikipedia, the free encyclopedia (2016). 38. particles-Artigo Malvern.pdf. 39. Sarroukh, R., Goormaghtigh, E., Ruysschaert, J.-M. & Raussens, V. ATR-FTIR: A ‘rejuvenated’ tool to investigate amyloid proteins. Biochim. Biophys. Acta BBA - Biomembr. 1828, 2328–2338 (2013). 40. Yeung, P. S.-W. & Axelsen, P. H. The Crowded Environment of a Reverse Micelle Induces the Formation of β-Strand Seed Structures for Nucleating Amyloid Fibril Formation. J. Am. Chem. Soc. 134, 6061–6063 (2012). 41. Demountable_Liquid_Cells_Manual.pdf. 42. Yang, J. T., Wu, C.-S. C. & Martinez, H. M. in (ed. Enzymology, B.-M. in) 130, 208–269 (Academic Press, 1986). 43. Bartolini, M. et al. Insight Into the Kinetic of Amyloid β (1–42) Peptide Self-Aggregation: Elucidation of Inhibitors’ Mechanism of Action. ChemBioChem 8, 2152–2161 (2007). 44. Simmons, L. K. et al. Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol. Pharmacol. 45, 373–379 (1994). 45. Ritchie, C. Protein Purification. Mater. Methods 2, (2012). 第三章 1. Chimon, S. et al. Evidence of fibril-like beta-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s beta-amyloid. Nat. Struct. Mol. Biol. 14, 1157–1164 (2007). 2. Nag, S. et al. Nature of the Amyloid-β Monomer and the Monomer-Oligomer Equilibrium. J. Biol. Chem. 286, 13827–13833 (2011). 3. Lindhagen-Persson, M., Brännström, K., Vestling, M., Steinitz, M. & Olofsson, A. Amyloid-β Oligomer Specificity Mediated by the IgM Isotype – Implications for a Specific Protective Mechanism Exerted by Endogenous Auto-Antibodies. PLoS ONE 5, e13928 (2010). 4. Linfield, W. M. Anionic surfactants. (M. Dekker, 1976). 5. Kumar, S., Singh, A. K., Krishnamoorthy, G. & Swaminathan, R. Thioflavin T Displays Enhanced Fluorescence Selectively Inside Anionic Micelles and Mammalian Cells. J. Fluoresc. 18, 1199–1205 (2008). 6. Barghorn, S. et al. Globular amyloid β-peptide1−42 oligomer − a homogenous and stable neuropathological protein in Alzheimer’s disease. J. Neurochem. 95, 834–847 (2005). 7. Kayed, R. et al. Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science 300, 486–489 (2003). 8. Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl. Acad. Sci. 111, 9384–9389 (2014). 9. Paravastu, A. K., Leapman, R. D., Yau, W.-M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer’s β-amyloid fibrils. Proc. Natl. Acad. Sci. 105, 18349–18354 (2008). 10. Fletcher, P. D. I., Howe, A. M. & Robinson, B. H. The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 83, 985 (1987). 11. Jeng, U.-S., Lin, T.-L., Lin, J. M. & Ho, D. L. Contrast variation SANS for the solution structure of the β-amyloid peptide 1–40 influenced by SDS surfactants. Phys. B Condens. Matter 385–386, Part 2, 865–867 (2006). 12. Han, Y., Huang, X., Cao, M. & Wang, Y. Micellization of Surfactin and Its Effect on the Aggregate Conformation of Amyloid β(1-40). J. Phys. Chem. B 112, 15195–15201 (2008). 附錄B 1. Winsor, P. A. Hydrotropy, solubilisation and related emulsification processes. Trans. Faraday Soc. 44, 376–398 (1948). 2. Mehta, S. K. & Kaur, G. in Thermodynamics (ed. Tadashi, M.) (InTech, 2011). 3. Bancroft, W. D. The Theory of Emulsification, V. J. Phys. Chem. 17, 501–519 (1912). 4. Bancroft rule. Wikipedia, the free encyclopedia (2014). 5. Adamson, A. W. Physical Chemistry of Surfaces. (Intersciences Publishers, 1960). 6. Israelachvili, J. N., Mitchell, D. J. & Ninham, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 72, 1525–1568 (1976). 7. William C. Griffin. CALCULATION OF HLB VALUES OF NON-IONIC SURFACTANTS. J. Soc. Cosmet. Chem. 5, 249–256 (1954). 8. Davies, J. T. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. GasLiquid Liq. Interface Proc. Int. Congr. Surf. Act. 426–438 (1957). 9. Hydrophilic-lipophilic balance. Wikipedia, the free encyclopedia (2015). 10. Bourrel, M. & Schechter, R. S. Microemulsions and Related Systems: Formulation, Solvency, and Physical Properties. (Editions TECHNIP, 2010). 11. Bu, G. et al. Effects of different factors on the forward extraction of soy protein in reverse micelle systems. Afr. J. Biotechnol. 11, 7247–7257 (2014). 12. Matzke, S. F., Creagh, A. L., Haynes, C. A., Prausnitz, J. M. & Blanch, H. W. Mechanisms of protein solubilization in reverse micelles. Biotechnol. Bioeng. 40, 91–102 (1992). 附錄D 1. SDS-Out SDS Precipitation Kit - Thermo Fisher Scientific. Available at: https://www.thermofisher.com/order/catalog/product/20308. (Accessed: 30th May 2016) 2. Pierce Detergent Removal Spin Column, 0.5 mL - Thermo Fisher Scientific. Available at: https://www.thermofisher.com/order/catalog/product/87777. (Accessed: 30th May 2016) 3. Compat-Able Protein Assay Preparation Reagent Kit - Thermo Fisher Scientific. Available at: https://www.thermofisher.com/order/catalog/product/23215. (Accessed: 30th May 2016) 4. Bio-BeadsTM SM-2 Resin | Process Separations | Bio-Rad. Available at: http://www.bio-rad.com/en-us/product/hydrophobic-interaction-chromatography-resins/bio-beads-sm-2-resin. (Accessed: 30th May 2016) 附錄E Nicot, C. & Waks, M. Proteins as invited guests of reverse micelles: conformational effects, significance, applications. Biotechnol. Genet. Eng. Rev. 13, 267–314 (1996). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50724 | - |
| dc.description.abstract | Beta-amyloid peptides (Aβ)是用來研究阿茲海默症病徵的一個重要因素。現今,已經有很多文獻利用不同方法來了解Aβ 胜肽的聚合過程和結構樣貌。在Aβ 胜肽的聚合過程中,寡聚物被認為與單體和纖維相比,是神經毒性較高的物種。由於寡聚物具有多態性(polymorphism),因此較難以研究寡聚物的結構樣貌。
在本實驗中,我們利用逆相微胞去模擬 Aβ 在擁擠的生物系統中寡聚化的 過程。利用Aerosol-OT (AOT, sodium bis(2-ethylexyl) sulfosuccinate)界面活性劑來製備逆相微胞系統,並選擇粒徑大小為33 nm(W0 為70)的逆相微胞來包覆單體,藉由逆相微胞碰撞性質,使其水相內的物質交換聚合而形成逆相微胞寡聚物(RM-Aβ oligomer)。利用ThT 螢光光譜和OMAB 斑點印跡法觀測Aβ 的聚合情形。我們也在不同培養天數下打破逆相微胞,並利用ThT 螢光監測25°C 静置培養下水相Aβ 的聚集情形,我們發現其聚集纖維的速度很快,是AOT 微胞促進纖維化,或是寡聚物作為一個核種(seed),使聚合過程中所需跨越的能障較 低,而快速聚合成纖維,這點仍有待更進一步的實驗證實。 | zh_TW |
| dc.description.abstract | Beta-amyloid peptides (Aβ) are widely considered as the key factor in the investigation of Alzheimer's disease (AD). The formation and accumulation of the peptides have been studied for a long time. According to recent research, Aβ oligomers may be a more relevant therapeutic target than other species such as fibrillar aggregates.
To understand the process of Aβ oligomerization in this study, we employ reverse micelles (RMs) to simulate the crowded biological environment, in which the structure and kinetics of Aβ are studied. In water-in-oil microemulsion, water droplets are dispersed in isooctane surrounded by anionic surfactant, Aerosol-OT (AOT, sodium bis(2-ethylexyl) sulfosuccinate). The size of RM is related to water loading (W0) parameter, which is the ratio of water molecules to surfactant molecules (W0 = [H2O] / [surfactant]). We encapsulate Aβ in RMs (W0 = 70) with 33 nm in hydrodynamic diameter measured by dynamic light scattering. To monitor and analyze the structural properties of Aβ, we use the OMAB dot blot and fluorescent dye Thioflavin-T (ThT) which is a powerful tool for detecting amyloid peptide aggregation. Reverse micelles provide a confined space for the studies of the aggregation state of peptides. In addition, we also disrupt the reverse micelle in different incubation periods and use ThT fluorescence to keep track Aβ of incubating quiescently in water phase at 25°C. We find that it becomes into fibril quickly. However, further investigation are needed to understand either AOT micelles or oligomeric seeds promote aggregation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:54:43Z (GMT). No. of bitstreams: 1 ntu-105-R03223143-1.pdf: 6550600 bytes, checksum: 4c25850abc454406c7c37bee9cd89697 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 第1章 緒論 1
1-1 Aβ胜肽與阿茲海默症之關聯性 1 1-2 Aβ胜肽聚集過程-結構多樣性探討 5 1-3 Aβ寡聚物(oligomers) 8 1-3-1 寡聚物的特性和其種類 9 1-3-2 穩定寡聚物 14 1-4 逆相微胞簡介與製備方法 18 1-4-1 逆相微胞(Reverse micelle, RM)的組成 18 1-4-2 利用逆相微胞包覆蛋白 20 1-5 研究動機 22 1-6 參考資料 23 第2章 合成與鑑定 34 2-1 化學試劑與使用儀器 34 2-2 胜肽製備 38 2-2-1 胜肽合成 38 2-2-1 胜肽純化 39 2-2-3 胜肽鑑定 40 2-2-4 胜肽定量 43 2-3 包覆Aβ1-40單體之逆相微胞製備 45 2-3-1 Aβ1-40單體製備 45 2-3-3 選擇適當的逆相微胞系統 45 2-3-4 RM-Aβ的製備-直接注入法 47 2-3-5 反向萃取回Aβ胜肽 48 2-4 Aβ胜肽寡聚物、纖維及逆相微胞之鑑定方法 49 2-4-1 Thioflavin T (ThT) 螢光光譜 49 2-4-2 穿透式電子顯微鏡 52 2-4-3 動態光散射粒徑分析儀 54 2-4-4 傅里葉轉換紅外光譜(Fourier Transform Infrared, FTIR) 56 2-4-5 圓偏光二色光譜(Circular Dichroism, CD) 58 2-4-6 粒徑篩層析儀(Size Exclusion Chromatography, SEC) 59 2-4-7 斑點印跡法(Dot Blot) 60 2-6 參考文獻 61 第3章 實驗結果與討論 68 3-1 胜肽的合成、純化與鑑定 68 3-2 以逆相微胞包覆Aβ1-40胜肽單體 71 3-2-1 Aβ1-40胜肽單體製備 71 3-2-2 監控Aβ在逆相微胞的聚合情形 72 3-2-3 比較不同方法培養RM-Aβ 75 3-3 逆相微胞寡聚物的鑑定 77 3-4 結果討論 79 3-5 參考文獻 80 第4章 結論及未來展望 83 4-1論文總結 83 4-2未來展望 83 附錄A 84 不同培養條件下,Aβ1-40類澱粉樣纖維和寡聚物之鑑定 84 附錄B 87 逆相微胞系統 87 (一) 影響逆相微胞形成的因子 87 (二) 優化逆相微胞系統 91 附錄C 95 AOT微胞干擾ThT訊號 95 附錄D 97 移除AOT界面活性劑的方法 97 (1) SDS-Out™ Precipitation Kit1 97 (2) Pierce® Detergent Removal Spin Columns2 97 (3) Compat-Able™ Protein Assay Preparation Reagent Set3 98 (4) Bio-Beads® SM Hydrophobic and Polar Interaction Adsorbents4 98 附錄E 103 其他方法監控RM-Aβ的聚合情形 103 (1) SEC 103 (2) FTIR 104 (3) CD 105 附錄F 106 (一) 培養不同天數取出後的RM-Aβ 106 (二) 限制空間對Aβ聚合的影響 109 | |
| dc.language.iso | zh-TW | |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 類澱粉多?分子 | zh_TW |
| dc.subject | 逆相微胞 | zh_TW |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 類澱粉多?分子 | zh_TW |
| dc.subject | 逆相微胞 | zh_TW |
| dc.subject | AOT | en |
| dc.subject | RMs | en |
| dc.subject | Reverse micelles | en |
| dc.subject | AOT | en |
| dc.subject | Aerosol-OT | en |
| dc.subject | Aβ | en |
| dc.subject | beta-amyloid | en |
| dc.subject | AD | en |
| dc.subject | ThT | en |
| dc.subject | Thioflavin-T | en |
| dc.subject | ThT | en |
| dc.subject | Thioflavin-T | en |
| dc.subject | RMs | en |
| dc.subject | Reverse micelles | en |
| dc.subject | AD | en |
| dc.subject | beta-amyloid | en |
| dc.subject | Aβ | en |
| dc.subject | Aerosol-OT | en |
| dc.title | 以逆相微胞製備類澱粉多肽分子寡聚物之研究 | zh_TW |
| dc.title | Oligomeric aggregates of beta-amyloid peptides
confined in reverse micelles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴桓青(Hwan-Ching Tai),黃人則(Joseph Jen-Tse Huang) | |
| dc.subject.keyword | 阿茲海默症,類澱粉多?分子,逆相微胞, | zh_TW |
| dc.subject.keyword | AD,beta-amyloid,Aβ,Aerosol-OT,AOT,Reverse micelles,RMs,Thioflavin-T,ThT, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU201600752 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 6.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
