請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峰輝(Feng-Huei Lin) | |
| dc.contributor.author | Yu-Chen Hsu | en |
| dc.contributor.author | 徐羽辰 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:53:43Z | - |
| dc.date.available | 2021-08-02 | |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-18 | |
| dc.identifier.citation | 1. Laperriere, N., et al., Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol, 2002. 64(3): p. 259-73.
2. Dietz, R., et al., Malignant gliomas - glioblastoma multiforme and astrocytoma III-IV with extracranial metastases. Report of two cases. Acta Neurochir (Wien), 1981. 57(1-2): p. 99-105. 3. Fuller, G.N., The WHO Classification of Tumours of the Central Nervous System, 4th edition. Arch Pathol Lab Med, 2008. 132(6): p. 906. 4. Wen, P.Y. and S. Kesari, Malignant gliomas in adults. N Engl J Med, 2008. 359(5): p. 492-507. 5. Rulseh, A.M., et al., Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields. World J Surg Oncol, 2012. 10: p. 220. 6. Huse, J.T. and E.C. Holland, Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer, 2010. 10(5): p. 319-31. 7. Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007. 114(2): p. 97-109. 8. Ostrom, Q.T., et al., CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neuro Oncol, 2014. 16 Suppl 4: p. iv1-iv63. 9. Farina, P., et al., Treatment of malignant gliomas in elderly patients: a concise overview of the literature. Biomed Res Int, 2014. 2014: p. 734281. 10. Claes, A., A.J. Idema, and P. Wesseling, Diffuse glioma growth: a guerilla war. Acta Neuropathol, 2007. 114(5): p. 443-58. 11. Preusser, M., et al., Current concepts and management of glioblastoma. Ann Neurol, 2011. 70(1): p. 9-21. 12. Buckner, J.C., et al., Central nervous system tumors. Mayo Clin Proc, 2007. 82(10): p. 1271-86. 13. Kreisl, T.N., Chemotherapy for malignant gliomas. Semin Radiat Oncol, 2009. 19(3): p. 150-4. 14. Vogelhuber, W., et al., Efficacy of BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of U-87 MG human glioblastoma xenografts. Int J Pharm, 2002. 238(1-2): p. 111-21. 15. Yung, W.K., Temozolomide in malignant gliomas. Semin Oncol, 2000. 27(3 Suppl 6): p. 27-34. 16. Athanassiou, H., et al., Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme. J Clin Oncol, 2005. 23(10): p. 2372-7. 17. Kroll, R.A. and E.A. Neuwelt, Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery, 1998. 42(5): p. 1083-99; discussion 1099-100. 18. Abbott, N.J., Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat, 2002. 200(6): p. 629-38. 19. Abbott, N.J., L. Ronnback, and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006. 7(1): p. 41-53. 20. Ballabh, P., A. Braun, and M. Nedergaard, The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis, 2004. 16(1): p. 1-13. 21. Xie, F., et al., Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model. Ultrasound Med Biol, 2008. 34(12): p. 2028-34. 22. Damia, G. and M. D'Incalci, Mechanisms of resistance to alkylating agents. Cytotechnology, 1998. 27(1-3): p. 165-73. 23. Parker, W.B., Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev, 2009. 109(7): p. 2880-93. 24. Yue, Q.X., X. Liu, and D.A. Guo, Microtubule-binding natural products for cancer therapy. Planta Med, 2010. 76(11): p. 1037-43. 25. Goodsell, D.S., The molecular perspective: DNA topoisomerases. Oncologist, 2002. 7(4): p. 381-2. 26. Ferguson, L.R. and B.C. Baguley, Mutagenicity of anticancer drugs that inhibit topoisomerase enzymes. Mutat Res, 1996. 355(1-2): p. 91-101. 27. Ferguson, L.R. and A.E. Pearson, The clinical use of mutagenic anticancer drugs. Mutat Res, 1996. 355(1-2): p. 1-12. 28. Blakeley, J., Drug delivery to brain tumors. Curr Neurol Neurosci Rep, 2008. 8(3): p. 235-41. 29. Perry, J., et al., Gliadel wafers in the treatment of malignant glioma: a systematic review. Curr Oncol, 2007. 14(5): p. 189-94. 30. Laquintana, V., et al., New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv, 2009. 6(10): p. 1017-32. 31. Brem, H. and P. Gabikian, Biodegradable polymer implants to treat brain tumors. J Control Release, 2001. 74(1-3): p. 63-7. 32. Matanovic, M.R., J. Kristl, and P.A. Grabnar, Thermoresponsive polymers: insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int J Pharm, 2014. 472(1-2): p. 262-75. 33. Nagpal, S., The role of BCNU polymer wafers (Gliadel) in the treatment of malignant glioma. Neurosurg Clin N Am, 2012. 23(2): p. 289-95, ix. 34. Westphal, M., et al., Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien), 2006. 148(3): p. 269-75; discussion 275. 35. Attenello, F.J., et al., Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol, 2008. 15(10): p. 2887-93. 36. Panigrahi, M., P.K. Das, and P.M. Parikh, Brain tumor and Gliadel wafer treatment. Indian Journal of Cancer, 2011. 48(1): p. 11-17. 37. Menei, P., et al., Biodegradable Carmustine Wafers (Gliadel) Alone or in Combination with Chemoradiotherapy: The French Experience. Annals of Surgical Oncology, 2010. 17(7): p. 1740-1746. 38. Koutsopoulos, S., Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. Journal of Biomedical Materials Research, 2002. 62(4): p. 600-612. 39. Bronzino, J.D., The Biomedical Engineering Handbook. CRC Press, 2000. 40. Matsumoto, T., et al., Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials, 2004. 25(17): p. 3807-12. 41. Sadat-Shojai, M., et al., Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater, 2013. 9(8): p. 7591-621. 42. Abidi, S.S.A. and Q. Murtaza, Synthesis and Characterization of Nano-hydroxyapatite Powder Using Wet Chemical Precipitation Reaction. Journal of Materials Science & Technology, 2014. 30(4): p. 307-310. 43. Shyong, Y.J., et al., Insulin-loaded hydroxyapatite combined with macrophage activity to deliver insulin for diabetes mellitus. Journal of Materials Chemistry B, 2015. 3(11): p. 2331-2340. 44. Bareford, L.M. and P.W. Swaan, Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev, 2007. 59(8): p. 748-58. 45. Fried, L.E. and J.L. Arbiser, Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal, 2009. 11(5): p. 1139-48. 46. Kumar, A., U. Kumar Singh, and A. Chaudhary, Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities. Future Med Chem, 2013. 5(7): p. 809-29. 47. Wang, X., et al., Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PLoS One, 2011. 6(4): p. e18490. 48. Chang, K.H., et al., Honokiol-induced apoptosis and autophagy in glioblastoma multiforme cells. Oncol Lett, 2013. 6(5): p. 1435-1438. 49. Arora, S., et al., Honokiol: a novel natural agent for cancer prevention and therapy. Curr Mol Med, 2012. 12(10): p. 1244-52. 50. Hu, J., et al., Liposomal honokiol, a potent anti-angiogenesis agent, in combination with radiotherapy produces a synergistic antitumor efficacy without increasing toxicity. Exp Mol Med, 2008. 40(6): p. 617-28. 51. Crane, C., et al., Honokiol-mediated inhibition of PI3K/mTOR pathway: a potential strategy to overcome immunoresistance in glioma, breast, and prostate carcinoma without impacting T cell function. J Immunother, 2009. 32(6): p. 585-92. 52. Joo, Y.N., et al., Honokiol inhibits U87MG human glioblastoma cell invasion through endothelial cells by regulating membrane permeability and the epithelial-mesenchymal transition. Int J Oncol, 2014. 44(1): p. 187-94. 53. Maria Helena S., e.a., Synthesis Control and Characterization of Hydroxyapatite Prepared by Wet Precipitation Process . Materials Research, 2004. 7(4): p. 625-630. 54. Lemos, A.F. and J.M.F. Ferreira, The valences of egg white for designing smart porous bioceramics: As foaming and consolidation agent. Bioceramics, Vol 16, 2004. 254-2: p. 1045-1048. 55. Zhao, H.S., et al., Biomineralizing synthesis of mesoporous hydroxyapatite-calcium pyrophosphate polycrystal using ovalbumin as biosurfactant. Materials Chemistry and Physics, 2008. 111(2-3): p. 265-270. 56. Zhang, X.X., et al., Fabrication of hydroxyapatite/stearic acid composite coating and corrosion behavior of coated magnesium alloy. Materials Letters, 2012. 88: p. 76-78. 57. Li, Y. and W. Weng, Surface modification of hydroxyapatite by stearic acid: characterization and in vitro behaviors. J Mater Sci Mater Med, 2008. 19(1): p. 19-25. 58. Itokazu, M., et al., Local drug delivery system using ceramics: vacuum method for impregnating a chemotherapeutic agent into a porous hydroxyapatite block. Journal of Materials Science-Materials in Medicine, 1999. 10(4): p. 249-252. 59. Itokazu, M., et al., Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing. Biomaterials, 1998. 19(7-9): p. 817-819. 60. Yin, L.M., et al., Long term and standard incubations of WST-1 reagent reflect the same inhibitory trend of cell viability in rat airway smooth muscle cells. Int J Med Sci, 2013. 10(1): p. 68-72. 61. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62. 62. Datta, S.R., A. Brunet, and M.E. Greenberg, Cellular survival: a play in three Akts. Genes Dev, 1999. 13(22): p. 2905-27. 63. Brazil, D.P., Z.Z. Yang, and B.A. Hemmings, Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci, 2004. 29(5): p. 233-42. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50706 | - |
| dc.description.abstract | 高度神經膠質瘤為最常見且侵略性高的原發性腦腫瘤,現今治療腦瘤方式以外科手術為主,然而其因形狀不規則且邊緣癌細胞普遍有向外浸潤情形,造成術後極高的復發風險。因此術後多會以輔助性化療抑制腦中殘留的腫瘤。然而藥物經由口服或注射進入人體有諸多不足,首先腦中血腦屏障 (BBB) 結構將大幅限制藥物由血液循環滲透到腦組織,且循環代謝過程難以維持有效藥物濃度,循環過程亦對人體其他正常組織產生毒性,因此發展有別於傳統的給藥方式有其必要。近年來,利用生物可分解的生醫材料攜帶藥物,直接於手術後進行顱內給藥是重要的研究方向,如臨床上的 GLIADELR Wafer,該藥物載體將直接在腦中進行藥物控制釋放,使目標區域周邊能維持有效藥物濃度並長期存在,增加藥物的治療效果。
本研究將以氫氧基磷灰石 (hydroxyapatite, HAp) 作為基材,利用其良好生物相容性及可降解性作為吸附和厚朴酚 (honokiol) 藥物的載體 (HAp-honokiol) ,探討其以疏水性吸附攜帶抗癌藥物、利用 pH 敏感特性作為藥物釋放機制之可行性及效果,試圖克服臨床產品面臨的問題以提供治療神經膠質瘤的選擇方案。此外亦分析 honokiol 抑制膠質瘤細胞的凋亡途徑,並建立本實驗室 C57BL/6 小鼠神經膠質瘤的動物模式。 本研究以共沈澱方式合成 HAp 微粒,並在合成過程添加蛋白以幫助合成後的孔隙形成。接著為了使疏水性的和厚朴酚較易吸附在微粒表面,以硬脂酸做氫氧基磷灰石微粒的疏水修飾。樣品檢驗首先以X光散射圖譜 (X-Ray Diffraction Spectrum, XRD) 觀察 HAp 微粒之結晶相,以傅立葉轉換紅外線光譜儀 (FT-IR) 確認疏水性硬脂酸的修飾,以熱重分析儀 (thermogravimetric analysis, TGA) 得知藥物含量。再進行藥物釋放特性實驗,以紫外/可見光譜儀 (UV/Vis spectrum) 定量樣品分別在酸性及中性水相環境下藥物釋放情形。本實驗選用小鼠膠質瘤ALTS1C1 作細胞活性、毒性實驗。並以免疫染色及蛋白質表現量檢驗分析該藥物對細胞造成的細胞凋亡機制。最後以立體定位儀顱內注射 ALTS1C1 細胞於 C57BL/6 小鼠腦部以建立腦小鼠膠質瘤動物模式。 實驗顯示,合成之樣品具備相當高的藥物吸附量,以 TGA 測得每 100 μg的 HAp-honokiol 含有 15 μg 的藥物。經由藥物釋放特性實驗,在酸性環境下本實驗樣品將於 48 小時內快速釋放出所有的藥物,而中性環境下僅會緩慢釋放出 65 % 的藥物而停止釋放。而經細胞活性毒性測試,觀察到 HAp-honokiol 能在體外環境延長釋放時間。相較於藥物本身,該樣品能長期抑制膠質瘤細胞生長。本研究亦探討了和厚朴酚對於ALTS1C1神經膠質瘤細胞的抑制效果與途徑,Annexin V-PI雙染 及 西方點墨法 (Western Blot) 確認藥物將會抑制 Akt 進而誘導細胞產生一系列步入凋亡的機制。 | zh_TW |
| dc.description.abstract | High-grade gliomas are the most common and aggressive types of primary brain tumor. Surgery remains the first line therapy of gliomas nowadays because of its effectiveness. However, high-grade gliomas have feature of diffuse infiltration that may cause the difficulty and failure of surgical resection, that is, the relapse rate after surgery remains high. Therefore, it is necessary to apply adjuvant chemotherapy to inhibit the cancer recurrence. However, when drugs are given via systemic circulation, Blood-Brain Barrier (BBB) restricts the entry of chemotherapeutic agents from blood side to brain side, and consequently limits the concentration and the effect of drugs. The drugs would also cause damage of normal tissues or organs when circulating. As a result, different route of administration is needed in the treatment of gliomas. Using biodegradable biomaterials as drug carriers for local delivery in brain is a promising therapy lately. For instance, the only drug carriers product approved by FDA in clinic, GLIADELR Wafer, can achieve long-term drug release and maintain the effective drug concentration in the brain tumor site.
This study is willing to develop hydroxyapatite particles as drug carriers carrying honokiol (HAp-honokiol) and provides an alternative option when dealing with gliomas in clinical. The effectivity of the drug adsorption, drug-releasing profile, and tumor cell inhibition effect and its mechanism would be analyzed. And the animal model of C57BL/6 mice glioma would be established in this study. In this research, the synthesis of hydroxyapatite (HAp) particles is conducted by modified co-precipitation method. The addition of egg white helps the formation of porous structures afterwards. XRD is for observing the crystal phase of the HAp particles and FTIR is used to analyze the modification of stearic acid on the HAp particles. The drug loading capacity is then evaluated by TGA. And the drug releasing profiles in neutral and acid environment are conducted by UV-Vis. ALTS1C1 is the glioma cell model in this experiment. Cell viability tests, toxicity tests, and immunostaining are used to analyzed the inhibition effect and apoptosis pathway by HAp-honokiol. Finally, the intercerebral injection of ALTS1C1 to establish the mice glioma model is conducted by the stereotactic apparatus. The results show promisingly high adsorption rate of HAp-honokiol, that 100 μg sample contains 15 μg of honokiol. Through the drug releasing experiments, honokiol would be rapidly released within 48 hours in acid environment, while the accumulative concentration of releasing honokiol reach the plateau of 65 % and stop rising. And the in vitro studies show well inhibiting effect of tumor growth and induction of cell apoptosis of HAp-honokio. The apoptosis pathway of ALTS1C1 by honokiol is also confirmed through Annexin V-PI double staining and western blot. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:53:43Z (GMT). No. of bitstreams: 1 ntu-105-R02548030-1.pdf: 13109433 bytes, checksum: 44ace3e74322f9d5079aa5802261ab7c (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 摘要................................................................................................... I
Abstract............................................................................................. IV 圖目錄................................................................................................. X 表目錄................................................................................................. XI 第一章 前言......................................................................................... 1 1-1 人類神經膠質瘤............................................................................ 1 1─2 神經膠質瘤的治療........................................................................ 3 1-3 血腦屏障..................................................................................... 4 1-4 化學藥物治療.............................................................................. 5 第二章 理論基礎................................................................................. 8 2-1 局部藥物控制釋放..................................................................... 8 2-2 藥物載體......................................................................................... 9 2-3 氫氧基磷灰石 (Hydroxyapatite, HAp) .......................................... 10 2-4氫氧基磷灰石的合成方式............................................................... 11 2-5 癌細胞吞噬HAp-honokiol後藥物釋放機制.................................. 13 2-6 和厚朴酚抑制腫瘤機制................................................................ 14 第三章 材料製備與流程............................................................................. 16 3-1實驗儀器.................................................................................... 16 3-2實驗藥品....................................................................................... 17 3-3 實驗方法與流程........................................................................... 18 3-4 材料合成.................................................................................... 19 3-4-1 多孔性氫氧基磷灰石 (HAp) 藥物載體合成............................. 19 3-4-2多孔性氫氧基磷灰石藥物載體表面修飾硬脂酸......................... 20 3-4-3 藥物載體吸附和厚朴酚 (HAp-honokiol) ............................... 20 3-5材料分析..................................................................................... 21 3-5-1 X-ray 繞射儀晶體分析.......................................................... 21 3-5-2 傅立葉轉換紅外線光譜 (FT-IR Spectrometer) ............................. 22 3-5-3 熱重分析儀 (Thermogravimetric Analyzer, TGA) ...................... 22 3-5-4 場發射掃描式電子顯微鏡及能量散佈光譜儀 (SEM & EDS) ..... 23 3-5-5 紫外光/可見光吸收光譜儀.................................................... 23 3-5-6 粒徑分析................................................................................... 24 3-6 in vitro體外實驗............................................................................. 25 3-6-1 UV-Vis觀察HAp-honokiol體外藥物釋放特性.......................... 25 3-6-2 LDH細胞毒性測試.................................................................. 25 3-6-3 WST-1 細胞增生測試........................................................... 27 3-6-4 LIVE/DEAD 細胞雙染存活分析.............................................. 29 3-6-5 Annexin V-FITC/PI雙染法分析.............................................. 30 3-6-6 流式細胞分析儀......................................................................... 31 3-6-7 十二烷基硫酸鈉聚丙烯醯胺膠體電泳..................................... 31 3-6-8西方墨點法 (Western Blotting) ............................................ 32 3-7 in vivo動物實驗.......................................................................... 33 3-7-1 小鼠膠質瘤動物模式............................................................. 33 3-7-2 原位腦瘤植入與腦組織收成.................................................... 33 3-7-3 MRI核磁共振造影................................................................. 34 第四章 結果與討論............................................................................. 35 4-1材料定性分析................................................................................... 35 4-1-1 XRD晶格繞射分析................................................................... 35 4-1-2 FT/IR紅外線光譜分析.............................................................. 36 4-1-3 TGA 熱重分析..................................................................... 38 4-1-4 SEM掃描電子顯微鏡影像...................................................... 39 4-1-5 EDS X光微區元素分析.............................................................. 40 4-2 體外實驗................................................................................... 41 4-2-1 UV/Vis藥物釋放分析................................................................... 43 4-2-2 WST-1細胞增生測試............................................................ 45 4-2-3 LDH細胞毒性測試............................................................... 46 4-2-4 LIVE/DEAD染色觀察細胞生存情形........................................ 47 4-2-5 Annexin V/PI染色並以流式細胞儀做細胞凋亡分析................ 48 4-2-6 西式點墨法分析藥物誘導細胞行凋亡之途徑................................ 40 4-3 體內實驗.................................................................................. 52 4-3-1 C57B/L6小鼠神經膠質瘤ALTS1C1動物模式的建立.................. 54 4-3-2 腫瘤體積追蹤初步評估......................................................... 52 第五章 結論........................................................................................... 55 參考資料.............................................................................................. 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 藥物控制釋放 | zh_TW |
| dc.subject | 氫氧基磷灰石 | zh_TW |
| dc.subject | 神經膠質瘤 | zh_TW |
| dc.subject | 和厚朴酚 | zh_TW |
| dc.subject | 疏水性吸附 | zh_TW |
| dc.subject | 顱內置藥 | zh_TW |
| dc.subject | 氫氧基磷灰石 | zh_TW |
| dc.subject | 神經膠質瘤 | zh_TW |
| dc.subject | 和厚朴酚 | zh_TW |
| dc.subject | 藥物控制釋放 | zh_TW |
| dc.subject | 疏水性吸附 | zh_TW |
| dc.subject | 顱內置藥 | zh_TW |
| dc.subject | Honokiol | en |
| dc.subject | Hydroxyapatite | en |
| dc.subject | Intracerebral administration | en |
| dc.subject | Hydrophobic adsorption | en |
| dc.subject | Controlled drug release | en |
| dc.subject | Honokiol | en |
| dc.subject | Glioma | en |
| dc.subject | Intracerebral administration | en |
| dc.subject | Hydrophobic adsorption | en |
| dc.subject | Controlled drug release | en |
| dc.subject | Hydroxyapatite | en |
| dc.subject | Glioma | en |
| dc.title | 以多孔性氫氧基磷灰石做為神經膠質之藥物載體 | zh_TW |
| dc.title | The Study of Porous Hydroxyapatite Particles as Anti-Glioma Drug Carrier | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 張國基(Kuo-Chi Chang) | |
| dc.contributor.oralexamcommittee | 張淑真(Shu-Chen Chang),楊禎明(Chen-Ming Yang) | |
| dc.subject.keyword | 氫氧基磷灰石,神經膠質瘤,和厚朴酚,藥物控制釋放,疏水性吸附,顱內置藥, | zh_TW |
| dc.subject.keyword | Hydroxyapatite,Glioma,Honokiol,Controlled drug release,Hydrophobic adsorption,Intracerebral administration, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201600941 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 12.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
