請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50705完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧麗珍(Lee-Jene Teng) | |
| dc.contributor.author | Yu-Tzu Lin | en |
| dc.contributor.author | 林瑜姿 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:53:40Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-19 | |
| dc.identifier.citation | 1. Noble WC, Valkenburg HA, Wolters CH. 1967. Carriage of Staphylococcus aureus in random samples of a normal population. J Hyg (Lond) 65:567-573.
2. Casewell MW, Hill RL. 1986. The carrier state: methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 18 Suppl A:1-12. 3. Kluytmans J, van Belkum A, Verbrugh H. 1997. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505-520. 4. Lowy FD. 1998. Staphylococcus aureus infections. N Engl J Med 339:520-532. 5. Wenzel RP, Perl TM. 1995. The significance of nasal carriage of Staphylococcus aureus and the incidence of postoperative wound infection. J Hosp Infect 31:13-24. 6. von Eiff C, Becker K, Machka K, Stammer H, Peters G. 2001. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344:11-16. 7. Lyon BR, Skurray R. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol Rev 51:88-134. 8. Barber M. 1961. Methicillin-resistant staphylococci. J Clin Pathol 14:385-393. 9. Giesbrecht P, Kersten T, Maidhof H, Wecke J. 1998. Staphylococcal cell wall: morphogenesis and fatal variations in the presence of penicillin. Microbiol Mol Biol Rev 62:1371-1414. 10. Hartman BJ, Tomasz A. 1984. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J Bacteriol 158:513-516. 11. Berger-Bachi B, Rohrer S. 2002. Factors influencing methicillin resistance in staphylococci. Arch Microbiol 178:165-171. 12. Katayama Y, Ito T, Hiramatsu K. 2000. A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549-1555. 13. Pantosti A, Venditti M. 2009. What is MRSA? Eur Respir J 34:1190-1196. 14. Gould IM. 2005. The clinical significance of methicillin-resistant Staphylococcus aureus. J Hosp Infect 61:277-282. 15. Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O'Boyle C, Danila RN, Lynfield R. 2003. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976-2984. 16. Gorwitz RJ. 2008. A review of community-associated methicillin-resistant Staphylococcus aureus skin and soft tissue infections. Pediatr Infect Dis J 27:1-7. 17. Hiramatsu K, Cui L, Kuroda M, Ito T. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol 9:486-493. 18. Ito T, Katayama Y, Hiramatsu K. 1999. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob Agents Chemother 43:1449-1458. 19. Ito T, Katayama Y, Asada K, Mori N, Tsutsumimoto K, Tiensasitorn C, Hiramatsu K. 2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1323-1336. 20. Boundy S, Safo MK, Wang L, Musayev FN, O'Farrell HC, Rife JP, Archer GL. 2013. Characterization of the Staphylococcus aureus rRNA methyltransferase encoded by orfX, the gene containing the staphylococcal chromosome Cassette mec (SCCmec) insertion site. J Biol Chem 288:132-140. 21. IWG-SCC. 2009. Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother 53:4961-4967. 22. Chongtrakool P, Ito T, Ma XX, Kondo Y, Trakulsomboon S, Tiensasitorn C, Jamklang M, Chavalit T, Song JH, Hiramatsu K. 2006. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother 50:1001-1012. 23. Katayama Y, Ito T, Hiramatsu K. 2001. Genetic organization of the chromosome region surrounding mecA in clinical staphylococcal strains: role of IS431-mediated mecI deletion in expression of resistance in mecA-carrying, low-level methicillin-resistant Staphylococcus haemolyticus. Antimicrob Agents Chemother 45:1955-1963. 24. McCarthy AJ, Lindsay JA. 2010. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiol 10:173. 25. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK, National Healthcare Safety Network T, Participating National Healthcare Safety Network F. 2008. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 29:996-1011. 26. Al Wohoush I, Rivera J, Cairo J, Hachem R, Raad I. 2011. Comparing clinical and microbiological methods for the diagnosis of true bacteraemia among patients with multiple blood cultures positive for coagulase-negative staphylococci. Clin Microbiol Infect 17:569-571. 27. Chaves F, Garcia-Alvarez M, Sanz F, Alba C, Otero JR. 2005. Nosocomial spread of a Staphylococcus hominis subsp. novobiosepticus strain causing sepsis in a neonatal intensive care unit. J Clin Microbiol 43:4877-4879. 28. Palazzo IC, d'Azevedo PA, Secchi C, Pignatari AC, Darini AL. 2008. Staphylococcus hominis subsp. novobiosepticus strains causing nosocomial bloodstream infection in Brazil. J Antimicrob Chemother 62:1222-1226. 29. Cunha BA, Esrick MD, Larusso M. 2007. Staphylococcus hominis native mitral valve bacterial endocarditis (SBE) in a patient with hypertrophic obstructive cardiomyopathy. Heart Lung 36:380-382. 30. d'Azevedo PA, Trancesi R, Sales T, Monteiro J, Gales AC, Pignatari AC. 2008. Outbreak of Staphylococcus hominis subsp. novobiosepticus bloodstream infections in Sao Paulo city, Brazil. J Med Microbiol 57:256-257. 31. Kloos WE, Musselwhite MS. 1975. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Appl Microbiol 30:381-385. 32. Kloos WE, Bannerman TL. 1994. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 7:117-140. 33. Gao Z, Tseng CH, Pei Z, Blaser MJ. 2007. Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci U S A 104:2927-2932. 34. Godtfredsen WO, Jahnsen S, Lorck H, Roholt K, Tybring L. 1962. Fusidic acid: a new antibiotic. Nature 193:987. 35. Fernandes P. 2016. Fusidic acid: a bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harb Perspect Med 6:a025437. 36. Dobie D, Gray J. 2004. Fusidic acid resistance in Staphylococcus aureus. Arch Dis Child 89:74-77. 37. Biedenbach DJ, Rhomberg PR, Mendes RE, Jones RN. 2010. Spectrum of activity, mutation rates, synergistic interactions, and the effects of pH and serum proteins for fusidic acid (CEM-102). Diagn Microbiol Infect Dis 66:301-307. 38. Fantin B, Leclercq R, Duval J, Carbon C. 1993. Fusidic acid alone or in combination with vancomycin for therapy of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 37:2466-2469. 39. Bodley JW, Zieve FJ, Lin L, Zieve ST. 1969. Formation of the ribosome-G factor-GDP complex in the presence of fusidic acid. Biochem Biophys Res Commun 37:437-443. 40. Agirrezabala X, Frank J. 2009. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 42:159-200. 41. Tanaka N, Kinoshita T, Masukawa H. 1968. Mechanism of protein synthesis inhibition by fusidic acid and related antibiotics. Biochem Biophys Res Commun 30:278-283. 42. Savelsbergh A, Rodnina MV, Wintermeyer W. 2009. Distinct functions of elongation factor G in ribosome recycling and translocation. RNA 15:772-780. 43. Hirashima A, Kaji A. 1973. Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J Biol Chem 248:7580-7587. 44. Borg A, Pavlov M, Ehrenberg M. 2016. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome. Nucleic Acids Res 44:3264-3275. 45. Besier S, Ludwig A, Brade V, Wichelhaus TA. 2003. Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol 47:463-469. 46. Nagaev I, Bjorkman J, Andersson DI, Hughes D. 2001. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol Microbiol 40:433-439. 47. Norstrom T, Lannergard J, Hughes D. 2007. Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus. Antimicrob Agents Chemother 51:4438-4446. 48. O'Neill AJ, Chopra I. 2006. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol Microbiol 59:664-676. 49. O'Neill AJ, Larsen AR, Henriksen AS, Chopra I. 2004. A fusidic acid-resistant epidemic strain of Staphylococcus aureus carries the fusB determinant, whereas fusA mutations are prevalent in other resistant isolates. Antimicrob Agents Chemother 48:3594-3597. 50. Lannergard J, Norstrom T, Hughes D. 2009. Genetic determinants of resistance to fusidic acid among clinical bacteremia isolates of Staphylococcus aureus. Antimicrob Agents Chemother 53:2059-2065. 51. Chen HJ, Hung WC, Tseng SP, Tsai JC, Hsueh PR, Teng LJ. 2010. Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 54:4985-4991. 52. Chen Y, Koripella RK, Sanyal S, Selmer M. 2010. Staphylococcus aureus elongation factor G – structure and analysis of a target for fusidic acid. FEBS J 277:3789-3803. 53. Laurberg M, Kristensen O, Martemyanov K, Gudkov AT, Nagaev I, Hughes D, Liljas A. 2000. Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol 303:593-603. 54. Skold SE. 1982. Chemical cross-linking of elongation factor G to both subunits of the 70-S ribosomes from Escherichia coli. Eur J Biochem 127:225-229. 55. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905-920. 56. McLaws F, Chopra I, O'Neill AJ. 2008. High prevalence of resistance to fusidic acid in clinical isolates of Staphylococcus epidermidis. J Antimicrob Chemother 61:1040-1043. 57. O'Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I. 2007. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother 51:1737-1740. 58. Yazdankhah SP, Asli AW, Sorum H, Oppegaard H, Sunde M. 2006. Fusidic acid resistance, mediated by fusB, in bovine coagulase-negative staphylococci. J Antimicrob Chemother 58:1254-1256. 59. Chen HJ, Tsai JC, Hung WC, Tseng SP, Hsueh PR, Teng LJ. 2011. Identification of fusB-mediated fusidic acid resistance islands in Staphylococcus epidermidis isolates. Antimicrob Agents Chemother 55:5842-5849. 60. Chen HJ, Hung WC, Lin YT, Tsai JC, Chiu HC, Hsueh PR, Teng LJ. 2015. A novel fusidic acid resistance determinant, fusF, in Staphylococcus cohnii. J Antimicrob Chemother 70:416-419. 61. O'Brien FG, Price C, Grubb WB, Gustafson JE. 2002. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother 50:313-321. 62. O'Neill AJ, Larsen AR, Skov R, Henriksen AS, Chopra I. 2007. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J Clin Microbiol 45:1505-1510. 63. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101:9786-9791. 64. Ender M, Berger-Bachi B, McCallum N. 2007. Variability in SCCmecN1 spreading among injection drug users in Zurich, Switzerland. BMC Microbiol 7:62. 65. Kinnevey PM, Shore AC, Brennan GI, Sullivan DJ, Ehricht R, Monecke S, Slickers P, Coleman DC. 2013. Emergence of sequence type 779 methicillin-resistant Staphylococcus aureus harboring a novel pseudo staphylococcal cassette chromosome mec (SCCmec)-SCC-SCCCRISPR composite element in Irish hospitals. Antimicrob Agents Chemother 57:524-531. 66. Guo X, Peisker K, Backbro K, Chen Y, Koripella RK, Mandava CS, Sanyal S, Selmer M. 2012. Structure and function of FusB: an elongation factor G-binding fusidic acid resistance protein active in ribosomal translocation and recycling. Open Biol 2:120016. 67. Cox G, Thompson GS, Jenkins HT, Peske F, Savelsbergh A, Rodnina MV, Wintermeyer W, Homans SW, Edwards TA, O'Neill AJ. 2012. Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proc Natl Acad Sci U S A 109:2102-2107. 68. Wang JL, Tang HJ, Hsieh PH, Chiu FY, Chen YH, Chang MC, Huang CT, Liu CP, Lau YJ, Hwang KP, Ko WC, Wang CT, Liu CY, Liu CL, Hsueh PR. 2012. Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 40:103-107. 69. Castanheira M, Watters AA, Bell JM, Turnidge JD, Jones RN. 2010. Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007-2008. Antimicrob Agents Chemother 54:3614-3617. 70. Castanheira M, Watters AA, Mendes RE, Farrell DJ, Jones RN. 2010. Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J Antimicrob Chemother 65:1353-1358. 71. Nakaminami H, Noguchi N, Ikeda M, Hasui M, Sato M, Yamamoto S, Yoshida T, Asano T, Senoue M, Sasatsu M. 2008. Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan. J Med Microbiol 57:1251-1258. 72. Thong KL, Junnie J, Liew FY, Yusof MY, Hanifah YA. 2009. Antibiograms and molecular subtypes of methicillin-resistant Staphylococcus aureus in local teaching hospital, Malaysia. J Microbiol Biotechnol 19:1265-1270. 73. Udo EE, Al-Sweih N, Mokaddas E, Johny M, Dhar R, Gomaa HH, Al-Obaid I, Rotimi VO. 2006. Antibacterial resistance and their genetic location in MRSA isolated in Kuwait hospitals, 1994-2004. BMC Infect Dis 6:168. 74. Farrell DJ, Castanheira M, Chopra I. 2011. Characterization of global patterns and the genetics of fusidic acid resistance. Clin Infect Dis 52 Suppl 7:S487-492. 75. Chen CM, Huang M, Chen HF, Ke SC, Li CR, Wang JH, Wu LT. 2011. Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC Microbiol 11:98. 76. Proctor RA, van Langevelde P, Kristjansson M, Maslow JN, Arbeit RD. 1995. Persistent and relapsing infections associated with small-colony variants of Staphylococcus aureus. Clin Infect Dis 20:95-102. 77. Bayston R, Ashraf W, Smith T. 2007. Triclosan resistance in methicillin-resistant Staphylococcus aureus expressed as small colony variants: a novel mode of evasion of susceptibility to antiseptics. J Antimicrob Chemother 59:848-853. 78. Abu-Qatouseh LF, Chinni SV, Seggewiss J, Proctor RA, Brosius J, Rozhdestvensky TS, Peters G, von Eiff C, Becker K. 2010. Identification of differentially expressed small non-protein-coding RNAs in Staphylococcus aureus displaying both the normal and the small-colony variant phenotype. J Mol Med (Berl) 88:565-575. 79. Tuchscherr L, Heitmann V, Hussain M, Viemann D, Roth J, von Eiff C, Peters G, Becker K, Loffler B. 2010. Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis 202:1031-1040. 80. Latimer J, Forbes S, McBain AJ. 2012. Attenuated virulence and biofilm formation in Staphylococcus aureus following sublethal exposure to triclosan. Antimicrob Agents Chemother 56:3092-3100. 81. Brouillette E, Martinez A, Boyll BJ, Allen NE, Malouin F. 2004. Persistence of a Staphylococcus aureus small-colony variant under antibiotic pressure in vivo. FEMS Immunol Med Microbiol 41:35-41. 82. Glaser R, Becker K, von Eiff C, Meyer-Hoffert U, Harder J. 2014. Decreased susceptibility of Staphylococcus aureus small-colony variants toward human antimicrobial peptides. J Invest Dermatol 134:2347-2350. 83. Seifert H, von Eiff C, Fatkenheuer G. 1999. Fatal case due to methicillin-resistant Staphylococcus aureus small colony variants in an AIDS patient. Emerg Infect Dis 5:450-453. 84. von Eiff C, Bettin D, Proctor RA, Rolauffs B, Lindner N, Winkelmann W, Peters G. 1997. Recovery of small colony variants of Staphylococcus aureus following gentamicin bead placement for osteomyelitis. Clin Infect Dis 25:1250-1251. 85. Acar JF, Goldstein FW, Lagrange P. 1978. Human infections caused by thiamine- or menadione-requiring Staphylococcus aureus. J Clin Microbiol 8:142-147. 86. Seifert H, Wisplinghoff H, Schnabel P, von Eiff C. 2003. Small colony variants of Staphylococcus aureus and pacemaker-related infection. Emerg Infect Dis 9:1316-1318. 87. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G. 2006. Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295-305. 88. von Eiff C, Heilmann C, Proctor RA, Woltz C, Peters G, Gotz F. 1997. A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J Bacteriol 179:4706-4712. 89. Bates DM, von Eiff C, McNamara PJ, Peters G, Yeaman MR, Bayer AS, Proctor RA. 2003. Staphylococcus aureus menD and hemB mutants are as infective as the parent strains, but the menadione biosynthetic mutant persists within the kidney. J Infect Dis 187:1654-1661. 90. Besier S, Ludwig A, Ohlsen K, Brade V, Wichelhaus TA. 2007. Molecular analysis of the thymidine-auxotrophic small colony variant phenotype of Staphylococcus aureus. Int J Med Microbiol 297:217-225. 91. Gilligan PH, Gage PA, Welch DF, Muszynski MJ, Wait KR. 1987. Prevalence of thymidine-dependent Staphylococcus aureus in patients with cystic fibrosis. J Clin Microbiol 25:1258-1261. 92. Sendi P, Proctor RA. 2009. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol 17:54-58. 93. Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, Bayer AS. 2011. Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides. Antimicrob Agents Chemother 55:526-531. 94. Bignardi GE, Woodford N, Chapman A, Johnson AP, Speller DC. 1996. Detection of the mec-A gene and phenotypic detection of resistance in Staphylococcus aureus isolates with borderline or low-level methicillin resistance. J Antimicrob Chemother 37:53-63. 95. Brakstad OG, Aasbakk K, Maeland JA. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30:1654-1660. 96. EUCAST. 2016. Breakpoint tables for interpretation of MICs and zone diameters, version 6.0, January 2016. http://www.eucast.org/clinical_breakpoints/. 97. Coutant C, Olden D, Bell J, Turnidge JD. 1996. Disk diffusion interpretive criteria for fusidic acid susceptibility testing of staphylococci by the National Committee for Clinical Laboratory Standards method. Diagn Microbiol Infect Dis 25:9-13. 98. Joshi GS, Spontak JS, Klapper DG, Richardson AR. 2011. Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol 82:9-20. 99. Clinical and Laboratory Standards Institute. 2016. Performance standards for antimicrobial susceptibility testing; 26th informational supplement. CLSI document M100-S26. Clinical and Laboratory Standards Institute, Wayne, PA. 100. Murray BE, Singh KV, Heath JD, Sharma BR, Weinstock GM. 1990. Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol 28:2059-2063. 101. Bouchami O, Ben Hassen A, de Lencastre H, Miragaia M. 2011. Molecular epidemiology of methicillin-resistant Staphylococcus hominis (MRSHo): low clonality and reservoirs of SCCmec structural elements. PLoS One 6:e21940. 102. Okuma K, Iwakawa K, Turnidge JD, Grubb WB, Bell JM, O'Brien FG, Coombs GW, Pearman JW, Tenover FC, Kapi M, Tiensasitorn C, Ito T, Hiramatsu K. 2002. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J Clin Microbiol 40:4289-4294. 103. Ito T, Ma XX, Takeuchi F, Okuma K, Yuzawa H, Hiramatsu K. 2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob Agents Chemother 48:2637-2651. 104. Takano T, Higuchi W, Otsuka T, Baranovich T, Enany S, Saito K, Isobe H, Dohmae S, Ozaki K, Takano M, Iwao Y, Shibuya M, Okubo T, Yabe S, Shi D, Reva I, Teng LJ, Yamamoto T. 2008. Novel characteristics of community-acquired methicillin-resistant Staphylococcus aureus strains belonging to multilocus sequence type 59 in Taiwan. Antimicrob Agents Chemother 52:837-845. 105. Hanssen AM, Kjeldsen G, Sollid JU. 2004. Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative Staphylococci: evidence of horizontal gene transfer? Antimicrob Agents Chemother 48:285-296. 106. Kobayashi N, Urasawa S, Uehara N, Watanabe N. 1999. Distribution of insertion sequence-like element IS1272 and its position relative to methicillin resistance genes in clinically important Staphylococci. Antimicrob Agents Chemother 43:2780-2782. 107. Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, Bost DA, Riehman M, Naidich S, Kreiswirth BN. 1999. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556-3563. 108. Harmsen D, Claus H, Witte W, Rothganger J, Turnwald D, Vogel U. 2003. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442-5448. 109. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008-1015. 110. Zhang L, Thomas JC, Miragaia M, Bouchami O, Chaves F, d'Azevedo PA, Aanensen DM, de Lencastre H, Gray BM, Robinson DA. 2013. Multilocus sequence typing and further genetic characterization of the enigmatic pathogen, Staphylococcus hominis. PLoS One 8:e66496. 111. O'Toole GA, Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449-461. 112. Zimmermann A, Lüthy J, Pauli U. 2000. Event specific transgene detection in Bt11 corn by quantitative PCR at the Integration Site. Lebensm-Wiss Technol 33:210-216. 113. Bloemendaal AL, Brouwer EC, Fluit AC. 2010. Methicillin resistance transfer from Staphylocccus epidermidis to methicillin-susceptible Staphylococcus aureus in a patient during antibiotic therapy. PLoS One 5:e11841. 114. McDougal LK, Fosheim GE, Nicholson A, Bulens SN, Limbago BM, Shearer JE, Summers AO, Patel JB. 2010. Emergence of resistance among USA300 methicillin-resistant Staphylococcus aureus isolates causing invasive disease in the United States. Antimicrob Agents Chemother 54:3804-3811. 115. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821-829. 116. Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K. 1998. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother 42:199-209. 117. Hung WC, Chen HJ, Tsai JC, Tseng SP, Lee TF, Hsueh PR, Shieh WY, Teng LJ. 2014. Gemella parahaemolysans sp. nov. and Gemella taiwanensis sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 64:2060-2065. 118. Hung WC, Chen HJ, Lin YT, Tsai JC, Chen CW, Lu HH, Tseng SP, Jheng YY, Leong KH, Teng LJ. 2015. Skin commensal staphylococci may act as reservoir for fusidic acid resistance genes. PLoS One 10:e0143106. 119. Huang YH, Tseng SP, Hu JM, Tsai JC, Hsueh PR, Teng LJ. 2007. Clonal spread of SCCmec type IV methicillin-resistant Staphylococcus aureus between community and hospital. Clin Microbiol Infect 13:717-724. 120. Besier S, Ludwig A, Brade V, Wichelhaus TA. 2005. Compensatory adaptation to the loss of biological fitness associated with acquisition of fusidic acid resistance in Staphylococcus aureus. Antimicrob Agents Chemother 49:1426-1431. 121. Curran JN, Winter DC, Bouchier-Hayes D. 2006. Biological fate and clinical implications of arginine metabolism in tissue healing. Wound Repair Regen 14:376-386. 122. Baze PE, Milano G, Verrando P, Renee N, Ortonne JP. 1985. Distribution of polyamines in human epidermis. Br J Dermatol 112:393-396. 123. Thurlow LR, Joshi GS, Clark JR, Spontak JS, Neely CJ, Maile R, Richardson AR. 2013. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 13:100-107. 124. Zhang S, Ma R, Liu X, Zhang X, Sun B. 2015. Modulation of ccrAB expression and SCCmec excision by an inverted repeat element and SarS in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 59:6223-6232. 125. Baines SL, Howden BP, Heffernan H, Stinear TP, Carter GP, Seemann T, Kwong JC, Ritchie SR, Williamson DA. 2016. Rapid emergence and evolution of Staphylococcus aureus clones harboring fusC-containing staphylococcal cassette chromosome elements. Antimicrob Agents Chemother 60:2359-2365. 126. Askarian F, van Sorge NM, Sangvik M, Beasley FC, Henriksen JR, Sollid JU, van Strijp JA, Nizet V, Johannessen M. 2014. A Staphylococcus aureus TIR domain protein virulence factor blocks TLR2-mediated NF-kappaB signaling. J Innate Immun 6:485-498. 127. Kahl BC, Belling G, Reichelt R, Herrmann M, Proctor RA, Peters G. 2003. Thymidine-dependent small-colony variants of Staphylococcus aureus exhibit gross morphological and ultrastructural changes consistent with impaired cell separation. J Clin Microbiol 41:410-413. 128. Jenke-Kodama H, Sandmann A, Muller R, Dittmann E. 2005. Evolutionary implications of bacterial polyketide synthases. Mol Biol Evol 22:2027-2039. 129. Kaplan ML, Dye W. 1976. Growth requirements of some small-colony-forming variants of Staphylococcus aureus. J Clin Microbiol 4:343-348. 130. Brinster S, Lamberet G, Staels B, Trieu-Cuot P, Gruss A, Poyart C. 2009. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature 458:83-86. 131. Inglis B, Matthews PR, Stewart PR. 1990. Induced deletions within a cluster of resistance genes in the mec region of the chromosome of Staphylococcus aureus. J Gen Microbiol 136:2231-2239. 132. Annear DI, Grubb WB. 1976. Methicillin-sensitive variants in ageing broth cultures of methicillin-resistant Staphylococcus aureus. Pathology 8:69-72. 133. Sieradzki K, Leski T, Dick J, Borio L, Tomasz A. 2003. Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J Clin Microbiol 41:1687-1693. 134. Adhikari RP, Scales GC, Kobayashi K, Smith JM, Berger-Bachi B, Cook GM. 2004. Vancomycin-induced deletion of the methicillin resistance gene mecA in Staphylococcus aureus. J Antimicrob Chemother 54:360-363. 135. Higgins PG, Rosato AE, Seifert H, Archer GL, Wisplinghoff H. 2009. Differential expression of ccrA in methicillin-resistant Staphylococcus aureus strains carrying staphylococcal cassette chromosome mec type II and IVa elements. Antimicrob Agents Chemother 53:4556-4558. 136. Reipert A, Ehlert K, Kast T, Bierbaum G. 2003. Morphological and genetic differences in two isogenic Staphylococcus aureus strains with decreased susceptibilities to vancomycin. Antimicrob Agents Chemother 47:568-576. 137. Yang SJ, Xiong YQ, Boyle-Vavra S, Daum R, Jones T, Bayer AS. 2010. Daptomycin-oxacillin combinations in treatment of experimental endocarditis caused by daptomycin-nonsusceptible strains of methicillin-resistant Staphylococcus aureus with evolving oxacillin susceptibility (the 'seesaw effect'). Antimicrob Agents Chemother 54:3161-3169. 138. Peleg AY, Miyakis S, Ward DV, Earl AM, Rubio A, Cameron DR, Pillai S, Moellering RC, Jr., Eliopoulos GM. 2012. Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. PLoS One 7:e28316. 139. Camargo IL, Neoh HM, Cui L, Hiramatsu K. 2008. Serial daptomycin selection generates daptomycin-nonsusceptible Staphylococcus aureus strains with a heterogeneous vancomycin-intermediate phenotype. Antimicrob Agents Chemother 52:4289-4299. 140. Friedman L, Alder JD, Silverman JA. 2006. Genetic changes that correlate with reduced susceptibility to daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50:2137-2145. 141. Yang SJ, Kreiswirth BN, Sakoulas G, Yeaman MR, Xiong YQ, Sawa A, Bayer AS. 2009. Enhanced expression of dltABCD is associated with the development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. J Infect Dis 200:1916-1920. 142. Cui L, Tominaga E, Neoh HM, Hiramatsu K. 2006. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:1079-1082. 143. Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A. 2009. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5:e1000660. 144. Mishra NN, Yang SJ, Sawa A, Rubio A, Nast CC, Yeaman MR, Bayer AS. 2009. Analysis of cell membrane characteristics of in vitro-selected daptomycin-resistant strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:2312-2318. 145. Tropp BE. 1997. Cardiolipin synthase from Escherichia coli. Biochim Biophys Acta 1348:192-200. 146. Zhang YM, Rock CO. 2008. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222-233. 147. McLaws FB, Larsen AR, Skov RL, Chopra I, O'Neill AJ. 2011. Distribution of fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:1173-1176. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50705 | - |
| dc.description.abstract | 夫西地酸 (fusidic acid) 為臨床上用於治療葡萄球菌所引起的感染之藥物之一,但細菌可因藥物作用標的基因產生突變或產生保護藥物作用標的的蛋白質 (FusB-protein family) 而產生抗藥性。本實驗收集2008至2010年來臺大醫院細菌室之46株夫西地酸抗藥之抗甲氧西林金黃色葡萄球菌 (methicillin-resistant Staphylococcus aureus, MRSA) 菌株,分析其抗藥基因及分子流行病學。結果顯示,46株夫西地酸抗藥之MRSA菌株中,有19株 (41%) 在fusA基因產生突變,主要以H457Q/L461F及L461K為主,另外有27株 (59%) 帶有fusC基因。帶有fusA基因H457Q/L461F突變之菌株為SCCmec第二型,而帶有其他fusA突變及fusC基因之菌株大多數為SCCmec第三型。另外在PFGE基因分型的結果中顯示,帶有相同抗藥因子的菌株具有較相似的基因型。利用南方墨點法及核酸定序分析MRSA中帶有fusC基因的基因片段結構。結果顯示fusC基因位於一個新SCC基因片段,SCCfusC。SCCfusC,位於rlmH基因的下游及SCCmec片段的上游,並帶有ccrA1B1基因及speG基因。此fusC結構為首次發現,並有可能藉由clonal spread造成對夫西地酸抗藥菌株的增加。
而在凝固酶陰性葡萄球菌中,人葡萄球菌 (S. hominis) 帶有fusC基因的比例較其他菌種來的高。因此,針對人葡萄球菌共蒐集了33株夫西地酸抗藥菌株,其中僅2株帶有fusB基因,而有31株帶有fusC基因。利用PCR偵測其fusC基因的基因片段發現其中14株其fusC基因位於SCCfusC當中,3株位於SCC476。進一步使用核酸定序分析其他位在未知片段之fusC基因上下游序列後得到一個新的SCC基因片段,命名為SCC3390。。除了人葡萄球菌之外,在其他凝固酶陰性葡萄球菌例如表皮葡萄球菌、溶血葡萄球菌及頭狀葡萄球菌中亦偵測到SCCfusC結構,且不同菌種中發現之SCCfusC序列有很高的相似度,推測SCCfusC可於菌種間傳遞。 此外,我們發現有一病人共分離5株菌株,較早收集的3株菌株 (NTUH-9383、NTUH-471及NTUH-1230) 為MRSA,較晚收集的2株菌株 (NTUH-6319及NTUH-7203) 為MSSA (methicillin-susceptible S. aureus),且2株MSSA對daptomycin及teicoplanin有較高的抗性。而在表現型上可發現NTUH-7203具有菌落較小的現象。我們針對NTUH-9383及NTUH-7203進行全基因定序,發現兩株菌株在基因序列上共有13處差異,包含SCCmec基因片段、IS256插入(三處)、8個單點突變(包含 mprF, cls2, clpX and fabF)及1個單一核苷酸的插入。在過去文獻中,mprF及cls2突變被報導與S. aureus產生daptomycin抗藥性有關。NTUH-7203與菌落大小相對正常的NTUH-6319在基因上最明顯的差異為與細菌脂質合成有關的fabF,且外加脂質可讓NTUH-7203的菌落大小恢復,因此fabF突變可能為造成NTUH-7203成為小菌落突變株之主要原因。另外,在電子顯微鏡下發現,除了NTUH-7203之外,NTUH-6319也被觀察到小菌落突變株會有的不正常細胞外觀,推測小菌落突變株的形成是一系列改變所造成。 | zh_TW |
| dc.description.abstract | Fusidic acid is an antibiotic used in treatment against staphylococcal infection. Resistance to fusidic acid in Staphylococcus aureus is caused by alternation of drug target site or by protection of drug target site. In this study, we analyzed the resistance determinants in 46 fusidic acid-resistant methicillin-resistant S. aureus isolates collected from 2008 to 2010, and performed genotyping. The results showed that fusC (59%) was more common than fusA mutations (41%). The most frequent mutation sites in fusA includes L461K (N = 8) and H457Q/L461F (N = 6). Two major genotypes, spa type t037-ST239-SCCmec type III (83%) and t002-ST5- SCCmec type II (11%), were found. A novel SCC structure, termed SCCfusC, was integrated into the rlmH gene and located upstream of SCCmec and was present in all but one (26/27) fusC-carrying MRSA isolates. The SCCfusC also contained speG, which contributed to the polyamine resistance. This is the first report about MRSA isolates that carry both fusC and speG.
The fusC carriage in S. hominis was more frequent than other coagulase-negative staphylococci (CoNS). To understand the flanking region of fusC in S. hominis, 31 fusC-positive S. hominis isolates were collected and analyzed the structure of fusC element. The results showed that 14 isolates carried SCCfusC, 3 carried SCC476 and 8 carried new SCC structure, SCC3390. By PFGE and MLST analysis, the S. hominis population showed a limited clonality. Moreover, the SCCfusC was found in other species of CoNS including S. hominis, S. epidermidis, S. haemolyticus and S. capitis, suggesting that SCCfusC may transfer between different species of staphylococci. In this study, there were 5 vancomycin-intermediate S. aureus (VISA) isolates recovered from a same patient. The first three isolates (NTUH-9383, NTUH-471, and NTUH-1230) were MRSA but the latest two (NTUH-6319 and NTUH-7203) were methicillin-susceptible S. aureus (MSSA) and exhibited the characteristics of small colony variants (SCVs). Two MSSA isolates also displayed resistance to daptomycin. Whole genome sequencing of NTUH-9383 and NTUH-7203 indicated that there were 13 differences, including the presence or loss of SCCmec, 8 point mutations (including mprF, cls2, clpX and fabF), a single nucleotide insertion and three IS256 insertions. The most significant difference between NTUH-6319 and NTUH-7203 was the point mutation in fabF encoding fatty acid synthesis enzyme, which may possibly correspond to small colony of NTUH-7203. By high-resolution micrographs, both NTUH-6319 and NTUH-7203 displayed the features of SCV, abnormal intercellular substance. The overall findings suggested that daptomycin treatment may cause the formation of SCV after steps of a serial of changes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:53:40Z (GMT). No. of bitstreams: 1 ntu-105-D99424003-1.pdf: 2354763 bytes, checksum: 1554478e06d61b987a2936cf76744d28 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 I 中文摘要 II Abstract IV Contents VI List of figures IX List of tables X Chapter 1 Introduction 1 1.1. Staphylococci 1 1.1.1. Staphylococcus aureus 1 1.1.2. Methicillin-resistant S. aureus (MRSA) 2 1.1.1. Staphylococcal cassette chromosome mec (SCCmec) 3 1.1.2. Staphylococcus hominis 6 1.2. Fusidic acid 6 1.2.1. Resistance mechanism to fusidic acid 8 1.2.2. Epidemiology of fusidic acid-resistant S. aureus 10 1.3. Small colony variants 12 Chapter 2 Materials and Methods 14 2.1. Bacterial strains 14 2.2. Antimicrobial and polyamines susceptibility testing 15 2.3. DNA extraction 16 2.4. Pulsed-field gel electrophoresis 17 2.5. SCCmec typing 19 2.6. spa typing 20 2.7. Multilocus sequence typing 20 2.8. Detection and sequencing of fusidic acid resistance genes 21 2.9. Southern blot hybridization 21 2.10. Sequencing of the flanking regions of fusC 23 2.11. Detection of SCCfusC from other fusC-carrying isolates 24 2.12. SCCfusC horizontal gene transfer 24 2.13. Whole genome sequencing 25 2.14. Colony sizes and auxotrophy complementation test 25 2.15. Scanning electron microscopy (SEM) 26 2.16. Transmission electron microscopic (TEM) 27 2.17. Fatty acid composition 28 Chapter 3 Results 30 3.1. Fusidic acid resistance determinants among MRSA 30 3.1.1. Fusidic acid susceptibility 30 3.1.2. Detection of fusA gene point mutations 30 3.1.3. Prevalence of fusB, fusC and fusD 31 3.1.4. Molecular epidemiological analysis 31 3.1.5. The location of fusC gene in chromosome 32 3.1.6. Nucleotide sequencing of the genetic element harboring the fusC gene from isolate NTUH-4729 34 3.1.7. Prevalence of SCCfusC among the other fusC-carrying MRSA isolates. 35 3.1.8. Detection of the speG gene and susceptibility to polyamine. 35 3.2. Genetic structure of fusC gene element in S. hominis 36 3.2.1. Detection of SCCfusC and SCC476 36 3.2.2. Nucleotide sequence of unknown fusC element 37 3.2.3. Molecular typing among fusC-positive S. hominis 38 3.2.4. SCCfusC in different species 39 3.2.5. SCCfusC horizontal gene transfer 40 3.3. Isolates from the same patient 40 3.3.1. The isolation and molecular typing of five isolates 40 3.3.2. Comparison of antimicrobial susceptibility among five isolates 42 3.3.3. Genome comparison 43 3.3.4. Small colony variant in NTUH-7203 44 3.3.5. Atypical morphology of NTUH-6319 and NTUH-7203 44 3.3.6. Fatty acid compositions 45 Chapter 4 Discussion 46 4.1. Fusidic acid resistance among S. aureus 46 4.2. fusC genetic structures in S. hominis 50 4.3. Small colony variants selected during daptomycin treatment 52 References 90 Appendix 110 | |
| dc.language.iso | en | |
| dc.subject | 人葡萄球菌 | zh_TW |
| dc.subject | 金黃色葡萄球菌 | zh_TW |
| dc.subject | 夫西地酸 | zh_TW |
| dc.subject | fusC | zh_TW |
| dc.subject | 小菌落突變株 | zh_TW |
| dc.subject | fabF | zh_TW |
| dc.subject | 金黃色葡萄球菌 | zh_TW |
| dc.subject | 人葡萄球菌 | zh_TW |
| dc.subject | 夫西地酸 | zh_TW |
| dc.subject | fusC | zh_TW |
| dc.subject | 小菌落突變株 | zh_TW |
| dc.subject | fabF | zh_TW |
| dc.subject | fabF | en |
| dc.subject | Staphylococcus aureus | en |
| dc.subject | fabF | en |
| dc.subject | small colony variants | en |
| dc.subject | fusC | en |
| dc.subject | fusidic acid | en |
| dc.subject | Staphylococcus hominis | en |
| dc.subject | Staphylococcus hominis | en |
| dc.subject | Staphylococcus aureus | en |
| dc.subject | fusidic acid | en |
| dc.subject | fusC | en |
| dc.subject | small colony variants | en |
| dc.title | 金黃色葡萄球菌及人葡萄球菌中夫西地酸抗藥基因fusC之基因片段分析 | zh_TW |
| dc.title | Characterization of fusC elements in fusidic acid resistant Staphylococcus aureus and Staphylococcus hominis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊翠青(Tsuey-Ching Yang),陳小然(Hsiao-Jan Chen),廖淑貞(Shwu-Jen Liaw),邱浩傑(Hao-Chieh Chiu) | |
| dc.subject.keyword | 金黃色葡萄球菌,人葡萄球菌,夫西地酸,fusC,小菌落突變株,fabF, | zh_TW |
| dc.subject.keyword | Staphylococcus aureus,Staphylococcus hominis,fusidic acid,fusC,small colony variants,fabF, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU201601021 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
