請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李秋坤 | |
| dc.contributor.author | Chih-Kuang Lee | en |
| dc.contributor.author | 李治廣 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:53:13Z | - |
| dc.date.available | 2016-07-26 | |
| dc.date.copyright | 2016-07-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-19 | |
| dc.identifier.citation | [1] S. A. Amitsur, Extension of derivations to central simple algebras, Comm. Algebra
10(8) (1982) 797-803. [2] K. I. Beidar, W. S. Martindale III, A. A. Mikhalev, Rings with Generalized Iden- tities', Monographs and Textbooks in Pure and Applied Mathematics, Vol. 196 (Marcel Dekker, New York, 1996). [3] M. Brear, M. A. Chebotar, W. S. Martindale III, Functional Identities', Frontiers in Mathematics (Birkhauser-Verlag, Basel, 2007). [4] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957) 1104-1110. [5] T.-K. Lee, J.-H. Lin, Jordan derivations of prime rings with characteristic two, Linear Algebra Appl. 462 (2014) 1-15. [6] L. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc. 79 (1973) 219-223. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50697 | - |
| dc.description.abstract | 令 R 是一個質環,Q_ml (R) 為其左極大商環,滿足 char R = 2 與 dim_C RC=4。令 δ∶ R→ Q_ml (R) 是一個李導算。則我們證明對每個 x∈R,δ(x)=d(x)+ϕ(x)+W(x)+ν(x)
其中 d∶ R→Q_ml (R) 是一個導算,ϕ∶ R→Q_ml (R) 是一個特殊形式的李導算,W∶ R→Q_ml (R) 是一個特殊形式的弱李導算,ν∶ R→C 是一個加性函數並滿足一個特別的關係式。 | zh_TW |
| dc.description.abstract | Let R be a prime ring with extended centroid C and maximal left ring of quotients Q_ml (R). Let δ∶ R→ Q_ml (R) be a Lie derivation. Suppose that charR=2 and dim_C RC=4. It is proved that δ(x)=d(x)+ϕ(x)+W(x)+ν(x) for all x∈R, where d∶ R→Q_ml (R) is a derivation, ϕ∶ R→Q_ml (R) is a Lie derivation of a special form, W∶ R→Q_ml (R) is a weak Lie derivation of a special form, and ν∶ R→C is an additive map satisfying a specific relation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:53:13Z (GMT). No. of bitstreams: 1 ntu-105-R02221013-1.pdf: 1355033 bytes, checksum: 745cb5fbae3dc887c3daf05538098b0e (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 …………………………………………………… i
誌謝 …………………………………………………………………… ii 中文摘要 ……………………………………………………………… iii 英文摘要 ……………………………………………………………… iv 1 Introduction ………………………………………………………… 1 2 Preliminary Results ………………………………………………… 2 3 Counterexamples for Lie Derivations ……………………………… 4 4 Main Theorems ……………………………………………………… 7 5 Proofs of Main Theorems …………………………………………… 8 References………………………………………………………… 25 | |
| dc.language.iso | en | |
| dc.subject | 左極大商環 | zh_TW |
| dc.subject | 質環 | zh_TW |
| dc.subject | 導算 | zh_TW |
| dc.subject | 李導算 | zh_TW |
| dc.subject | 弱李導算 | zh_TW |
| dc.subject | 左極大商環 | zh_TW |
| dc.subject | 質環 | zh_TW |
| dc.subject | 導算 | zh_TW |
| dc.subject | 李導算 | zh_TW |
| dc.subject | 弱李導算 | zh_TW |
| dc.subject | Pring ring | en |
| dc.subject | Maximal left ring of quotients | en |
| dc.subject | Weak Lie Derivation | en |
| dc.subject | Lie derivation | en |
| dc.subject | Derivation | en |
| dc.title | 質環上的李導算 | zh_TW |
| dc.title | Lie Derivations of Prime Rings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡援宗,劉承楷 | |
| dc.subject.keyword | 質環,導算,李導算,弱李導算,左極大商環, | zh_TW |
| dc.subject.keyword | Pring ring,Derivation,Lie derivation,Weak Lie Derivation,Maximal left ring of quotients, | en |
| dc.relation.page | 26 | |
| dc.identifier.doi | 10.6342/NTU201601070 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
