Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50638
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳沛隆(Pei Lung Chen)
dc.contributor.authorPing-Chun Wuen
dc.contributor.author吳秉純zh_TW
dc.date.accessioned2021-06-15T12:50:04Z-
dc.date.available2018-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-20
dc.identifier.citation1 Iglesias, C. G. et al. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935-1980. American journal of kidney diseases : the official journal of the National Kidney Foundation 2, 630-639 (1983).
2 Davies, F. et al. Polycystic kidney disease re-evaluated: a population-based study. The Quarterly journal of medicine 79, 477-485 (1991).
3 Reed, B. et al. Presence of de novo mutations in autosomal dominant polycystic kidney disease patients without family history. American journal of kidney diseases : the official journal of the National Kidney Foundation 52, 1042-1050, doi:10.1053/j.ajkd.2008.05.015 (2008).
4 Harris, P. C. & Rossetti, S. Molecular diagnostics for autosomal dominant polycystic kidney disease. Nature reviews. Nephrology 6, 197-206, doi:10.1038/nrneph.2010.18 (2010).
5 The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium. Cell 77, 881-894 (1994).
6 Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339-1342 (1996).
7 Rossetti, S. et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. Journal of the American Society of Nephrology : JASN 18, 2143-2160, doi:10.1681/ASN.2006121387 (2007).
8 Kottgen, M. TRPP2 and autosomal dominant polycystic kidney disease. Biochimica et biophysica acta 1772, 836-850, doi:10.1016/j.bbadis.2007.01.003 (2007).
9 Ravine, D. et al. Phenotype and genotype heterogeneity in autosomal dominant polycystic kidney disease. Lancet 340, 1330-1333 (1992).
10 Hateboer, N. et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet 353, 103-107 (1999).
11 Gabow, P. A. Autosomal dominant polycystic kidney disease. The New England journal of medicine 329, 332-342, doi:10.1056/NEJM199307293290508 (1993).
12 Torres, V. E. & Harris, P. C. Autosomal dominant polycystic kidney disease: the last 3 years. Kidney international 76, 149-168, doi:10.1038/ki.2009.128 (2009).
13 Kelleher, C. L., McFann, K. K., Johnson, A. M. & Schrier, R. W. Characteristics of hypertension in young adults with autosomal dominant polycystic kidney disease compared with the general U.S. population. American journal of hypertension 17, 1029-1034, doi:10.1016/j.amjhyper.2004.06.020 (2004).
14 Grantham, J. J., Chapman, A. B. & Torres, V. E. Volume progression in autosomal dominant polycystic kidney disease: the major factor determining clinical outcomes. Clinical journal of the American Society of Nephrology : CJASN 1, 148-157, doi:10.2215/CJN.00330705 (2006).
15 Torres, V. E., Wilson, D. M., Hattery, R. R. & Segura, J. W. Renal stone disease in autosomal dominant polycystic kidney disease. American journal of kidney diseases : the official journal of the National Kidney Foundation 22, 513-519 (1993).
16 Grantham, J. J. Clinical practice. Autosomal dominant polycystic kidney disease. The New England journal of medicine 359, 1477-1485, doi:10.1056/NEJMcp0804458 (2008).
17 Xu, H. W., Yu, S. Q., Mei, C. L. & Li, M. H. Screening for intracranial aneurysm in 355 patients with autosomal-dominant polycystic kidney disease. Stroke; a journal of cerebral circulation 42, 204-206, doi:10.1161/STROKEAHA.110.578740 (2011).
18 Pei, Y. et al. Unified criteria for ultrasonographic diagnosis of ADPKD. Journal of the American Society of Nephrology : JASN 20, 205-212, doi:10.1681/ASN.2008050507 (2009).
19 Pei, Y. & Watnick, T. Diagnosis and screening of autosomal dominant polycystic kidney disease. Advances in chronic kidney disease 17, 140-152, doi:10.1053/j.ackd.2009.12.001 (2010).
20 Edghill, E. L., Bingham, C., Ellard, S. & Hattersley, A. T. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. Journal of medical genetics 43, 84-90, doi:10.1136/jmg.2005.032854 (2006).
21 Heidet, L. et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clinical journal of the American Society of Nephrology : CJASN 5, 1079-1090, doi:10.2215/CJN.06810909 (2010).
22 Hoevenaren, I. A. et al. Polycystic liver: clinical characteristics of patients with isolated polycystic liver disease compared with patients with polycystic liver and autosomal dominant polycystic kidney disease. Liver international : official journal of the International Association for the Study of the Liver 28, 264-270, doi:10.1111/j.1478-3231.2007.01595.x (2008).
23 Adeva, M. et al. Clinical and molecular characterization defines a broadened spectrum of autosomal recessive polycystic kidney disease (ARPKD). Medicine 85, 1-21, doi:10.1097/01.md.0000200165.90373.9a (2006).
24 Brook-Carter, P. T. et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease--a contiguous gene syndrome. Nature genetics 8, 328-332, doi:10.1038/ng1294-328 (1994).
25 Sampson, J. R. et al. Renal cystic disease in tuberous sclerosis: role of the polycystic kidney disease 1 gene. American journal of human genetics 61, 843-851, doi:10.1086/514888 (1997).
26 Chang, M. Y. & Ong, A. C. New treatments for autosomal dominant polycystic kidney disease. British journal of clinical pharmacology 76, 524-535, doi:10.1111/bcp.12136 (2013).
27 Loftus, B. J. et al. Genome duplications and other features in 12 Mb of DNA sequence from human chromosome 16p and 16q. Genomics 60, 295-308, doi:10.1006/geno.1999.5927 (1999).
28 Symmons, O., Varadi, A. & Aranyi, T. How segmental duplications shape our genome: recent evolution of ABCC6 and PKD1 Mendelian disease genes. Molecular biology and evolution 25, 2601-2613, doi:10.1093/molbev/msn202 (2008).
29 Bogdanova, N. et al. Homologues to the first gene for autosomal dominant polycystic kidney disease are pseudogenes. Genomics 74, 333-341, doi:10.1006/geno.2001.6568 (2001).
30 Garcia-Gonzalez, M. A. et al. Evaluating the clinical utility of a molecular genetic test for polycystic kidney disease. Molecular genetics and metabolism 92, 160-167, doi:10.1016/j.ymgme.2007.05.004 (2007).
31 Tan, Y. C., Blumenfeld, J. & Rennert, H. Autosomal dominant polycystic kidney disease: genetics, mutations and microRNAs. Biochimica et biophysica acta 1812, 1202-1212, doi:10.1016/j.bbadis.2011.03.002 (2011).
32 Consugar, M. B. et al. Characterization of large rearrangements in autosomal dominant polycystic kidney disease and the PKD1/TSC2 contiguous gene syndrome. Kidney international 74, 1468-1479, doi:10.1038/ki.2008.485 (2008).
33 Audrezet, M. P. et al. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Human mutation 33, 1239-1250, doi:10.1002/humu.22103 (2012).
34 King, K., Flinter, F. A., Nihalani, V. & Green, P. M. Unusual deep intronic mutations in the COL4A5 gene cause X linked Alport syndrome. Human genetics 111, 548-554, doi:10.1007/s00439-002-0830-3 (2002).
35 Tucker, T., Marra, M. & Friedman, J. M. Massively parallel sequencing: the next big thing in genetic medicine. American journal of human genetics 85, 142-154, doi:10.1016/j.ajhg.2009.06.022 (2009).
36 Rossetti, S. et al. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. Journal of the American Society of Nephrology : JASN 23, 915-933, doi:10.1681/ASN.2011101032 (2012).
37 Tan, A. Y. et al. Molecular diagnosis of autosomal dominant polycystic kidney disease using next-generation sequencing. The Journal of molecular diagnostics : JMD 16, 216-228, doi:10.1016/j.jmoldx.2013.10.005 (2014).
38 Trujillano, D. et al. Diagnosis of autosomal dominant polycystic kidney disease using efficient PKD1 and PKD2 targeted next-generation sequencing. Molecular genetics & genomic medicine 2, 412-421, doi:10.1002/mgg3.82 (2014).
39 Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine : official journal of the American College of Medical Genetics 17, 405-424, doi:10.1038/gim.2015.30 (2015).
40 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
41 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079, doi:10.1093/bioinformatics/btp352 (2009).
42 McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research 20, 1297-1303, doi:10.1101/gr.107524.110 (2010).
43 DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature genetics 43, 491-498, doi:10.1038/ng.806 (2011).
44 Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research 38, e164, doi:10.1093/nar/gkq603 (2010).
45 Robinson, J. T. et al. Integrative genomics viewer. Nature biotechnology 29, 24-26, doi:10.1038/nbt.1754 (2011).
46 Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols 4, 1073-1081, doi:10.1038/nprot.2009.86 (2009).
47 Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nature methods 7, 248-249, doi:10.1038/nmeth0410-248 (2010).
48 Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Methods in molecular biology 132, 365-386 (2000).
49 Qi, X. P. et al. Genetic diagnosis of autosomal dominant polycystic kidney disease by targeted capture and next-generation sequencing: utility and limitations. Gene 516, 93-100, doi:10.1016/j.gene.2012.12.060 (2013).
50 Rossetti, S. et al. Incompletely penetrant PKD1 alleles suggest a role for gene dosage in cyst initiation in polycystic kidney disease. Kidney international 75, 848-855, doi:10.1038/ki.2008.686 (2009).
51 Pei, Y. et al. A missense mutation in PKD1 attenuates the severity of renal disease. Kidney international 81, 412-417, doi:10.1038/ki.2011.370 (2012).
52 Rossetti, S. et al. Association of mutation position in polycystic kidney disease 1 (PKD1) gene and development of a vascular phenotype. Lancet 361, 2196-2201, doi:10.1016/S0140-6736(03)13773-7 (2003).
53 Porath, B. et al. Mutations in GANAB, Encoding the Glucosidase IIalpha Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. American journal of human genetics 98, 1193-1207, doi:10.1016/j.ajhg.2016.05.004 (2016).
54 Chang, M. Y. et al. Novel PKD1 and PKD2 mutations in Taiwanese patients with autosomal dominant polycystic kidney disease. Journal of human genetics 58, 720-727, doi:10.1038/jhg.2013.91 (2013).
55 Zhang, S. et al. Mutation analysis of autosomal dominant polycystic kidney disease genes in Han Chinese. Nephron. Experimental nephrology 100, e63-76, doi:10.1159/000084572 (2005).
56 Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research, doi:10.1093/nar/gkw343 (2016).
57 Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948, doi:10.1093/bioinformatics/btm404 (2007).
58 Ohta, T. Gene conversion and evolution of gene families: an overview. Genes 1, 349-356, doi:10.3390/genes1030349 (2010).
59 Mallawaarachchi, A. C. et al. Whole-genome sequencing overcomes pseudogene homology to diagnose autosomal dominant polycystic kidney disease. European journal of human genetics : EJHG, doi:10.1038/ejhg.2016.48 (2016).
60 Tan, A. Y. et al. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism. Clinical genetics 87, 373-377, doi:10.1111/cge.12383 (2015).
61 O'Brien, K. et al. Congenital hepatic fibrosis and portal hypertension in autosomal dominant polycystic kidney disease. Journal of pediatric gastroenterology and nutrition 54, 83-89, doi:10.1097/MPG.0b013e318228330c (2012).
62 Rossetti, S. et al. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. American journal of human genetics 68, 46-63, doi:10.1086/316939 (2001).
63 Vouk, K. et al. PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease. BMC medical genetics 7, 6, doi:10.1186/1471-2350-7-6 (2006).
64 Harris, P. C. & Torres, V. E. in GeneReviews(R) (eds R. A. Pagon et al.) (1993).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50638-
dc.description.abstract自體顯性多囊性腎臟病為最常見之遺傳性腎臟病,全球發生率約為四百分之一至千分之一。此屬晚發性腎臟疾病,患者通常於三、四十歲後出現雙側腎臟水泡等病徵,疾病惡化至末期腎衰竭時則需依靠腹膜透析或腎移植治療。已知兩個致病基因PKD1及PKD2,但由於兩基因所含外顯子的數目龐大且有六個與PKD1高度相似的同源偽基因,故為此病做基因檢測有相當的難度與挑戰。在這個研究裡我們使用目前的標準檢測方式-長片段聚合酶連鎖反應,並且利用訂製探針來捕捉基因所在區域,包含對於GC比例高的區域做兩次的基因捕捉,接著使用次世代定序來做基因檢測。基因檢測結果經由生物資訊分析及資料過濾流程後,所有疑似致病變異點都依照疾病資料庫PKDB及ACMG的準則判定,並用Sanger定序法做驗證。同時也利用生物資訊分析偽基因對於基因檢測的影響。
在61個病患家族裡,我們對於自體顯性多囊性腎臟病的診斷率為70% (41/59),對於自體隱性多囊性腎臟病的檢出率為50% (1/2)。其中自體顯性多囊性腎臟病的家族中有16個皆帶有相同的變異點(PKD2 c.2407C>T, p.R803X),我們發展出利用限制酶處理的快速篩檢方式,能在2.5小時內完成此變異點的篩檢。在生物資訊分析偽基因的干擾部分,利用現行次世代定序讀取的配對型,300bp片段長度,我們能將干擾降至4%以下。
本研究結果顯示,我們能利用次世代定序為自體顯性多囊性腎臟病提供一個可信靠的基因檢測平台,並有高達70%的檢出率。利用探針捕捉方式更大量的節省手工操作的人力及時間。我們並發展適合所有分生實驗室的快速篩檢,能在短時間內針對族群內常見變異點做出正確的診斷。合併快速篩檢並次世代定序,我們能為病患提供可信的基因檢測結果,更提供他們判斷家屬成員或者未發病之年輕成員帶有疾病的依據,以利他們及早確認診斷,也許之後更能依照基因的變異給予更合適的治療方式。
zh_TW
dc.description.abstractADPKD stands for autosomal dominant polycystic kidney disease, it affects 1/400~1/1000 individuals worldwide. It is a late on-set disease and patients often require dialysis or renal transplant when progressed into ESRD (end-stage renal disease). PKD1 and PKD2 are the causative genes for ADPKD. The large number of exons and homologous pseudogenes of PKD1 makes genetic testing challenging. In this study we perform both LRPCR (long-range polymerase chain reaction), the gold standard testing for PKD1, and probe capture as target enrichment methods, combined with region enhancement to improve coverage on high GC-content exons for NGS (next-generation sequencing) testing. All possible pathogenic variants were classified according to PKDB (PKD database) or ACMG guideline followed by Sanger sequencing for validation. We also perform bioinformatics analysis to estimate the interference of the pseudogenes.
In the 61-family cohorts, we gave 70% diagnostic rate (41/59) for ADPKD patients and 50% (1/2) for ARPKD patients. With 27% (16/59) of the ADPKD patients in our study carried the same variant, we also developed a screening method of RFLP for ADPKD hotspot (PKD2 c.2407C>T, p.R803X), that allowed us to perform fast diagnostic in less than 2.5 hours. The bioinformatics analysis also showed that with longer read length with paired-end reads, we can minimize the interference of pseudogenes to as low as 4% of total reads. In conclusion, we are able to provide confident genetic testing result utilizing NGS with diagnostic rate of 70% that requires no intensive labor work prior or additional sequencing after NGS, great coverage for high GC-content with double capture for region enhancement. Finally, we develop a speedy screening test that can be performed within 2.5 hours targeting PKD2 hotspot in our population that greatly reduces costs and may be carried in most testing laboratories.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:50:04Z (GMT). No. of bitstreams: 1
ntu-105-P03448006-1.pdf: 3415295 bytes, checksum: 9c5f8ce3da5e8d7a5e94d2f5e1843048 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsVerification letter from the Oral Examination Committee…………………………….... i
Acknowledgements…………………………………………………………………….. ii
English Abstract……………………………………………………………………….. iii
Chinese Abstract……………………………………………………………………….. iv
Table of Content……………………………………………………………………….. vi
List of Figures………………………………………………………………………….. ix
List of Tables…………………………………………………………………………... xi
Section A: Genetic Testing of ADPKD
1. Background…………………………………………………………………………. 1
1.1 Introduction to ADPKD………………………………………………………… 1
1.2 Clinical Symptoms of ADPKD………………………………………………… 1
1.3 Diagnosis and Treatment of ADPKD…………………………………………... 3
1.4 Genetics and Genetic Testing of ADPKD……………………………………… 5
1.5 NGS as genetic testing for ADPKD……………………………………………. 6
2. Aim of this study…………………………………………………………………… 7
3. Materials and methods……………………………………………………………… 8
3.1 Subjects…………………………………………………………………………. 8
3.2 Sample preparation……………………………………………………………... 8
3.3 Target enrichment method…………………………………………………….. 10
3.4 Next-generation sequencing…………………………………………………... 13
3.5 Data analysis and bioinformatics……………………………………………… 13
3.6 Variant filtration, classification and confirmation…………………………….. 14
3.7 Endonuclease Digestion of PKD2 hotspot……………………………………. 14
3.8 Paternity Testing………………………………………………………………. 16
4. Results…………………………………………………………………………….. 16
4.1 LRPCR vs. Nimblegen Capture………………………………………………. 16
4.2 Region Enhancement………………………………………………………….. 18
4.3 Pooling of LRPCR…………………………………………………………….. 21
4.4 Genetic Testing Findings……………………………………………………… 21
4.5 Endonuclease Digestion of PKD2 hotspot……………………………………. 24
5. Discussion…………………………………………………………………………. 29
5.1 LRPCR as target enrichment method…………………………………………. 29
5.2 Probe capture as target enrichment method…………………………………… 30
5.3 Genetic findings and variant classification………….………………………… 31
5.4 RFLP as cost-effective screening for ADPKD hotspot……………………….. 33
Section B: Distinguishing PKD1 from psuedogenes
1. Background……………………………………………………………………….. 35
1.1 PKD1 and pseudogenes……………………………………………………….. 35
1.2 How they distinguished using LRPCR………………………………………... 35
2. Material and methods……………………………………………………………... 35
2.1 MQ=0 at PKD1 pseudogenes and non pseudogenes region ………………….. 35
2.2 Simulating different read length setting………………………………………. 36
2.3 Simulating pair end and single end reads……………………………………... 36
2.4 Comparison of sequence alignment of PKD1 and pseudogenes……………… 37
3. Results…………………………………………………………………………….. 37
3.1 Pseudogenes vs. non pseudogenes part of PKD1……………………………... 37
3.2 Different read lengths, single, paired end……………………………………... 39
3.3 Alignment analysis of PKD1 and pseudogenes……………………………….. 39
4. Discussion…………………………………………………………………………. 42
Section C: Genetic counseling
1. PKD047………...…………………………………………………………………. 49
2. PKD019………...…………………………………………………………………. 53
3. PKD074………...…………………………………………………………………. 55
Conclusion………...…………………………………………………………………... 58
References………...…………………………………………………………………... 60
 
dc.language.isoen
dc.subject偽基因zh_TW
dc.subject偽基因zh_TW
dc.subject次世代定序zh_TW
dc.subject多囊腎zh_TW
dc.subject基因檢測zh_TW
dc.subject多囊腎zh_TW
dc.subject基因檢測zh_TW
dc.subject次世代定序zh_TW
dc.subjectpseudogenesen
dc.subjectNext-generation sequencingen
dc.subjectPKDen
dc.subjectpseudogenesen
dc.subjectPKDen
dc.subjectNext-generation sequencingen
dc.subjectgenetic testingen
dc.subjectgenetic testingen
dc.title以次世代定序為自體顯性多囊性腎臟病之基因檢測zh_TW
dc.titleNext-generation sequencing-based genetic testing of autosomal dominant polycystic kidney diseaseen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝豐舟,楊偉勛,高芷華
dc.subject.keyword多囊腎,基因檢測,次世代定序,偽基因,zh_TW
dc.subject.keywordPKD,Next-generation sequencing,genetic testing,pseudogenes,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201601124
dc.rights.note有償授權
dc.date.accepted2016-07-21
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved