請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50633完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | |
| dc.contributor.author | Chi-Ming Weng | en |
| dc.contributor.author | 翁啟銘 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:49:49Z | - |
| dc.date.available | 2019-07-26 | |
| dc.date.copyright | 2016-07-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-21 | |
| dc.identifier.citation | [1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488-492 (2004).
[2] H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent conducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices and Microstructures 48, 458-484 (2010). [3] M. Tadatsugu, “Transparent conducting oxide semiconductors for transparent electrodes,” Sci. Technol. 20, S35 (2005). [4] G. J. Exarhos, and X. D. Zhou,“Discovery-based design of transparent conducting oxide films,” Thin Solid Films 515, 7025-7052 (2007). [5] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition,” Thin Solid Films 445, 263-267 (2003). [6] A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda, “Transparent conducting Al-Doped ZnO thin films prepared by pulsed laser deposition,” Jpn. J. Appl. Phys. 35, L56 (1996). [7] V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713 (2006). [8] N. Ken, T. Kentaro, S. Mitsuhiko, N. Daisuke, I. Norikazu, S. Masayuki, T. Hidemi, T. Hitoshi, F. Paul, M. Koji, I. Kakuya, Y. Akimasa, and N. Shigeru, “Improved external efficiency InGaN-based light-emitting diodes with transparent conductive Ga-doped ZnO as p-electrodes,” Jpn. J. Appl. Phys. 43, L180 (2004). [9] J.R. Bellingham, W.A. Phillips, and C.J. Adkins, “Intrinsic performance limits in transparent conducting oxides,” J. Mater. Sci. Lett. 11, 263 (1992). [10] N. Taga, H. Odaka, Y. Shigesato, and I. Yasui, “Electrical properties of heteroepitaxial grown tin‐doped indium oxide films,” J. Appl. Phys. 80, 978 (1996). [11] M. Bender, J. Trube, and J. Stollenwerk, “Deposition of transparent and conducting indium-tin-oxide films by the r.f.-superimposed DC sputtering technology,” Thin Solid Films 354, 100 (1999). [12] T. Minami, “New n-type transparent conducting oxides,” MRS Bull. 25, 38 (2000). [13] N. Kikuchi, E. Kusano, H. Nanto, A. Kinbara, and H. Hosono, “Phonon scattering in electron transport phenomena of ITO films,” Vacuum 59, 492 (2000). [14] K. Ellmer, “Resistivity of polycrystalline zinc oxide films: current status and physical limit,” J. Phys. D Appl. Phys. 34, 3097 (2001). [15] H. Odaka, Y. Shigesato, T. Murakani, and S. Iwata, “Electronic Structure Analyses of Sn-doped In2O3,” Japan. J. Appl. Phys. 40, 3231 (2001). [16] B. Thangaraju, “Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor,” Thin Solid Films 402, 71 (2002). [17] H. C. Lee, and O. O. Park, “Behaviors of carrier concentrations and mobilities in indium–tin oxide thin films by DC magnetron sputtering at various oxygen flow rates,” Vacuum 77, 69 (2004). [18] H. C. Lee, and O. O. Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering,” Vacuum 75, 275 (2004). [19] H. C. Lee, “Electron scattering mechanisms in indium–tin-oxide thin films prepared at the various process conditions,” Appl. Surf. Sci. 252, 3428 (2006). [20] H. Han, J. W. Mayer, T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99, 123711 (2006). [21] Y. Shigesato, D.C. Paine, T. E. Haynes, “Study of the effect of ion implantation on the electrical and microstructural properties of tin‐doped indium oxide thin films,” J. Appl. Phys. 73, 3805 (1993). [22] Y. Shigesato, and D.C. Paine, “Study of the effect of Sn doping on the electronic transport properties of thin film indium oxide,” Appl. Phys. Lett. 62, 1268 (1993). [23] T. M. Ratcheva, M. D. Nanova, L. V. Vassilev, and M. G. Mikhailov, “Properties of In2O3: Te films prepared by the spraying method,” Thin Solid Films 139, 189 (1986). [24] J. Bruneaux, H. Cachet, M. Froment, and A. Messad, “Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping,” Thin Solid Films 197, 129 (1991). [25] S. Dasgupta, M. Lukas, K. Dossel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B 80, 085425 (2009) . [26] K. Ellmer, and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films 516, 4620 (2008). [27] K. Ellmer, and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films 516, 5829 (2008). [28] C. W. Bunn, “A Comparative Review of ZnO Materials and Devices,”Proc. Phys. Soc. London 47, 836 (1935). [29] T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev. 142, 570 (1966). [30] E. Mollwo, and Z. Angew. “Dispersion, absorption and thermal emission of zinc-oxide crystals,” Phys. 6, 257 (1954). [31] G. Galli, and J. E. Coker, “EPITAXIAL ZnO ON SAPPHIRE,” Appl. Phys. Lett. 16, 439 (1970). [32] D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids 15, 86 (1960). [33] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering in ZnO,” Phys. Rev. B 60, 2340 (1999). [34] Y. Z. Zhu, G. D. Chen, Honggang Ye, Aron, Walsh, C. Y. Moon, and Su-Huai Wei, “Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys,” Phys. Rev. B 77, 245209 (2008). [35] André Schleife, Claudia Röd, Jürgen Furthmüller, and Friedhelm Bechstedt, “Electronic and optical properties of MgxZn1−xO and CdxZn1−xO from ab initio calculations,” New J. Phys. 13, 085012 (2011). [36] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method,” J. Cryst. Growth 260, 166 (2004). [37] J. M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, “ZnO growth by chemical vapour transportJ. Cryst. Growth,” 207, 30 (1999). [38] D. C. Look, Mater. “Recent advances in ZnO materials and devices,”Sci. Eng. B 80, 381 (2001). [39] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230 (1997). [40] J. H. Lim, C. K. Kong, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering,” Adv. Mater. 18, 2720 (2006). [41] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Cryst. Growth 225, 110 (2001). [42] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455 (2005). [43] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84, 3654 (2004). [44] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B 22, 932 (2004). [45] H. P. Maruska and J. J. Tietjen, “THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN,” Appl. Phys. Lett. 15, 327 (1969). [46] C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi B 244,3027 (2007). [47] U. Rössler, “Semiconductors: II-VI and I-VII Compounds; Semimagnetic Compounds,” Landolt-Börnstein, New Series III/41B (1999). [48] C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, J. M. and M. Geurts, “Zinc Oxide” (Springer, 2010). [49] C. Klingshirn, “ZnO: Material, Physics and Applications,” Chem. Phys. Chem. 8, 782 (2007). [50] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely Transparent and Conductive ZnO:Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using AlCl3(6H2O) as New Doping Material,” Jpn. J. Appl. Phys. 36, L1078 (1997). [51] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, “Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD,” Thin Solid Films 260, 19 (1995). [52] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature,” Thin Solid Films 427, 401 (2003). [53] Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, “Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition,” J. Cryst. Growth 259, 130 (2003). [54] B.C. Jiao, X.D. Zhang, C.C. Wei, J. Sun, Q. Huang, Y. Zhao, “Effect of acetic acid on ZnO:In transparent conductive oxide prepared by ultrasonic spray pyrolysis,” Thin Solid Films 520, 1323 (2011). [55] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 77, 3761 (2000). [56] J. Hu and R. G. Gordon, “Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells,” Solar Cells 30, 437 (1991). [57] M. Olvera, S. Tirado Guerra, A. Maldonado, and L. CastaCeda, “Chemically sprayed ZnO:F thin films deposited from diluted solutions: Effect of the time of aging on physical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2346 (2006). [58] G. F. Neumark, ”Achievement of well conducting wide band-gap semiconductors: Role of solubility and of nonequilibrium impurity incorporation,” Phys. Rev. Lett. 62, 1800 (1989). [59] W. Walukiewicz, “Defect formation and diffusion in heavily dopedsemiconductors,” Phys. Rev. B 50, 5221 (1994). [60] C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, “First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe,” Phys. Rev. B 47, 9425 (1993). [61] O. F. Schirmer, and D. Zwingel, “The structure of the paramagnetic lithium center in zinc oxide and beryllium oxide,” J. Phys. Chem. Solids 29, 1407 (1968). [62] A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li‐doped ZnO films,” J. Vac. Sci. Technol. A 9, 286 (1991). [63] Y. Kanai, “Admittance Spectroscopy of Cu-Doped ZnO Crystals,” Jpn. J. Appl. Phys., Part 1 30, 703 (1991). [64] C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective,”Phys. Rev. B 66, 073202 (2002). [65] J. Joo, B. Y. Chow, M. Prakash, E. S. Boyden, and J. M. Jacobson, “Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis,” Nature Mater. 10, 596-601 (2011). [66] J. Yeo, S. Hong, M. Wanit, H. W. Kang, D. Lee, C. P. Grigoropoulos, H. J. Sung, and S. H. Ko, “Rapid, One-Step, Digital Selective Growth of ZnO Nanowires on 3D Structures Using Laser Induced Hydrothermal Growth,” Adv. Funct. Mater. 23, 3316-3323 (2013). [67] Y. He, T. Yanagida, K. Nagashima, F. Zhuge, G. Meng, B. Xu, A. Klamchuen, S. Rahong, M. Kanai, and X. Li, “Crystal-Plane Dependence of Critical Concentration for Nucleation on Hydrothermal ZnO Nanowires,” J. Phys Chem. C 117, 1197-1203 (2013). [68] R. Zhu, W. Zhang, C. Li, and R. Yang, “Uniform Zinc Oxide Nanowire Arrays Grown on Nonepitaxial Surface with General Orientation Control,” Nano Lett. 13, 5171-5176 (2013). [69] S. Baruah, and J. Dutta, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mat. 10, 013001 (2009). [70] Y. C. Chang, W. C. Yang, C. M. Chang, P. C. Hsu, and L. J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des. 9, 3161-3167 (2009). [71] Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das, and Z. L. Wang, “Wafer-Scale High-Throughput Ordered Growth of Vertically Aligned ZnO Nanowire Arrays,” Nano Lett. 10, 3414-3419 (2010). [72] T. Gao, and T. Wang, “Vapor Phase Growth of ZnO Nanorod–Nanobelt Junction Arrays,” J. Nanosci, Nanotechnol. 5, 1120-1124 (2005). [73] Y. Fang, Y. Wang, Y. Wan, Z. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C 114, 12469-12476 (2010). [74] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001). [75] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science 291, 1947-1949 (2001). [76] J. J. Wu, and S. C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater. 14, 215 (2002). [77] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 113-116 (2001). [78] W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, “ZnO Nanoneedles Grown Vertically on Si Substrates by Non-Catalytic Vapor-Phase Epitaxy,” Adv. Mater. 14, 1841-1843 (2002). [79] A. B. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO Nanotube Based Dye-Sensitized Solar Cells,” Nano Lett. 7, 2183-2187 (2007). [80] M. Willander, O. Nur, N. Bano, and K. Sultana, “Zinc oxide nanorod-based heterostructures on solid and soft substrates for white-light-emitting diode applications,” New J. Phys. 11, 125020 (2009). [81] M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts,” J. Phys. Chem. B 107, 659-663 (2003). [82] Y. Zhang, F. Lu, Z. Wang, and L. Zhang, “Aggregation of ZnO Nanorods into Films by Oriented Attachment,” J. Phys. Chem. C 111, 4519-4523 (2007). [83] Y. Tak, K. Yong, and C. Park, “Growth of Aligned ZnO Nanorods on Pt Buffer Layer Coated Silicon Substrates Using Metallorganic Chemical Vapor Deposition,” J. Electrochem. Soc. 152, G794-G797 (2005). [84] W. I. Park, D. Kim, S.-W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” ,J. Electrochem. Soc. 80, 4232-4234 (2002). [85] M. C. Jeong, B. Y. Oh, W. Lee, and J.-M. Myoung, “Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition (MOCVD),” J. Cryst. Growth 268, 149-154 (2004). [86] B. Zhang, N. Binh, K. Wakatsuki, Y. Segawa, Y. Kashiwaba, and K. Haga, “Synthesis and optical properties of single crystal ZnO nanorods,” Nanotechnology 15, S382 (2004). [87] S. Angappane, N. S. John, and G. Kulkarni, J. Nanosci. “Pyramidal Nanostructures of Zinc Oxide,” Nanotechnol. 6, 101-104 (2006). [88] P. Ganesan, K. McGuire, H. Kim, N. Gothard, S. Mohan, A. Rao, and G. Ramanath, “ZnO Nanowires by Pulsed Laser Vaporization: Synthesis and Properties,” J. Nanosci. Nanotechnol. 5, 1125-1129 (2005). [89] A. Hartanto, X. Ning, Y. Nakata, and T. Okada, “Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume,” Appl. Phys. A 78, 299-301 (2004). [90] C. O'Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. S. Torres, “Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices,” Nat. Nano 4, 239-244 (2009). [91] Y. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. Norton, F. Ren, and P. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy,” Appl. Phys. Lett. 81, 3046-3048 (2002). [92] H. T. Wang, B. Kang, F. Ren, L. Tien, P. Sadik, D. Norton, S. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO nanorods,” Appl. Phys. Lett. 86, 243503 (2005). [93] Yu-Feng Yao, Charng-Gan Tu, Ta-Wei Chang, Hao-Tsung Chen, Chi-Ming Weng, Chia-Ying Su, Chieh Hsieh, Che-Hao Liao, Yean-Woei Kiang, and C. C. Yang, “Growth of Highly Conductive Ga-Doped ZnO Nanoneedles,” ACS Appl. Mater. Interfaces 7 , 10525–10533 (2015) [94] Tevye Kuykendall, Peter J. Pauzauskie, Yanfeng Zhang, Joshua Goldberger, Donald Sirbuly, Jonathan Denlinger, and Peidong Yang, “Crystallographic alignment of high-density gallium nitride nanowire arrays,” Nat. Mater. 3, 524 - 528 (2004) [95] Eric A. Stach , Peter J. Pauzauskie , Tevye Kuykendall , Joshua Goldberger , Rongrui He, and Peidong Yang, “Watching GaN Nanowires Grow,” Nano Letters 6, pp 867–869 (2003) [96] Chia-Chun Chen, Chun-Chia Yeh , Chun-Ho Chen , Min-Yuan Yu , Hsiang-Lin Liu , Jih-Jen Wu , Kuei-Hsein Chen ,Li-Chyong Chen ,Jin-Yuan Peng, and Yang-Fang Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc.123, 2791–2798 (2001) [97] J. B. Hannon, S. Kodambaka, F. M. Ross and R. M. Tromp, “The influence of the surface migration of gold on the growth of silicon nanowires,” Nature 440, 69-71 (2006) [98] H. L. Qiu, C. B. Cao, X. Xiang, Y. H. Zhang, J. Li, and H. S. Zhu, “Large scale tapered GaN rods grown by chemical vapour deposition,” J. Cryst. Growth 190, 1 (2006). [99] M. J. Hÿtch, E. Snoeck, and R. Kilaas, “Quantitative measurement of displacement and strain fields from HREM micrographs,” Ultramicroscopy 74,131-146. (1998). [100] Misell D.L. “Image analysis, enhancement and interpretation” (Elsevier Science, 1979). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50633 | - |
| dc.description.abstract | The controlling mechanism for determining the growth direction of a Ga-doped ZnO (GaZnO) nanoneedle (NN) by using an Ag nanoparticle (NP) as vapor-liquid-solid (VLS) growth catalyst in molecular beam epitaxy (MBE) is disclosed. It is found that the local Ag (111) orientation of the catalytic Ag portion in an Ag NP determines the ZnO (002) orientation of the grown GaZnO and hence the NN growth direction. The ZnO (002) plane of the grown GaZnO is always parallel with the Ag (111) planes of the Ag portions involved in VLS growth in either the top or bottom Ag NP of an NN. When GaN is used as NN growth template, at a sufficiently high temperature (350-450 oC), a small Ag NP can become a quasi-single crystal with its Ag (111) plane consistent with the GaN (002) plane and hence results in the growth of a vertical GaZnO NN. However, tilted NNs can be grown from a large Ag NP or a cluster of Ag NP on GaN due to its non-uniform Ag (111) orientation distribution. At the early stage of GaZnO growth, GaZnO precipitation can be observed between Ag layers within an Ag NP, indicating the growth of a semiconductor on Ag. On other templates, like Si, sapphire, or SiO2, single-crystal Ag NP cannot be formed such that GaZnO NNs of random orientations are grown. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:49:49Z (GMT). No. of bitstreams: 1 ntu-105-R02941107-1.pdf: 3984847 bytes, checksum: 17af3298bb7b4c7cbbb175bf7dd231aa (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝-------------------------------------- i
摘要-------------------------------------- ii Abstract--------------------------------- iii Content---------------------------------- iv Chapter 1 Introduction------------------- 1 1.1 Transparent Conducting Oxide---------- 1 1.2 The Electrical Properties of TCO---- 2 1.3 General Reviews on ZnO as a Light-emitting Material 2 1.3.1 Crystal Structures----------------- 4 1.4 Doping of ZnO------------------------- 5 1.4.1 n-type doping--------------------- 5 1.4.2 p-type doping---------------------- 6 1.5 ZnO nanowire growth------------------ 7 1.6 Research Motivations and Thesis Organization8 Chapter 2 Analysis Methods---------------- 16 2.1 Specimen Preparation for Cross-section Transmission Electron Microscopy----------------------- 16 2.2 High-Resolution Transmission Electron Microscopy -------------------------------------------------17 2.3 Energy Dispersive X-ray Spectroscopy (EDX)- 22 2.4 Scanning Electron Microscopy (SEM)---- 23 2.5 Geometric Phase Analysis (GPA)------- 24 Chapter 3 Analysis results of Growth Orientations and Crystal Structures of Ga-doped ZnO Nanoneedles 33 3.1 Sample growth conditions------------- 33 3.2 GaZnO nanoneedles growth on GaN templates-- 34 3.3 GaZnO precipitation within an Ag NP-------- 40 3.4 GaZnO NNs grown on Si, sapphire, and SiO2 templates -------------------------------------------------41 3.5 Discussions------------------------- 46 Chapter 4 Conclusions-------------------- 71 References-------------------------------- 72 | |
| dc.language.iso | en | |
| dc.subject | 穿透式電子顯微鏡 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 奈米針 | zh_TW |
| dc.subject | 穿透式電子顯微鏡 | zh_TW |
| dc.subject | 氧化鋅 | zh_TW |
| dc.subject | 奈米針 | zh_TW |
| dc.subject | Transmission Electron Microscopy | en |
| dc.subject | Transmission Electron Microscopy | en |
| dc.subject | ZnO | en |
| dc.subject | Nanoneedle | en |
| dc.subject | ZnO | en |
| dc.subject | Nanoneedle | en |
| dc.title | 利用銀奈米顆粒為催化劑經由氣液固相生長模式所製作摻鎵氧化鋅奈米針的生長方向與晶格結構研究 | zh_TW |
| dc.title | Growth Orientations and Crystal Structures of
Ga-doped ZnO Nanoneedles Using Ag Nanoparticles as Catalyst in Vapor-liquid-solid Growth | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃建璋,吳肇欣,吳育任,江衍偉 | |
| dc.subject.keyword | 穿透式電子顯微鏡,氧化鋅,奈米針, | zh_TW |
| dc.subject.keyword | Transmission Electron Microscopy,ZnO,Nanoneedle, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201601176 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
