請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50611完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭永銘(Yung-Ming Jeng) | |
| dc.contributor.author | Shih-Yao Peng | en |
| dc.contributor.author | 彭詩窈 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:48:41Z | - |
| dc.date.available | 2021-08-26 | |
| dc.date.copyright | 2016-08-26 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-22 | |
| dc.identifier.citation | 1. Schafer, D.F. and M.F. Sorrell, Hepatocellular carcinoma. Lancet, 1999. 353(9160): p. 1253-7.
2. Hsu, H.C., et al., Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol, 2000. 157(3): p. 763-70. 3. Hsu, H.C., et al., Genetic alterations at the splice junction of p53 gene in human hepatocellular carcinoma. Hepatology, 1994. 19(1): p. 122-8. 4. Guichard, C., et al., Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet, 2012. 44(6): p. 694-8. 5. Yuan, R.H., et al., Opposite roles of human pancreatitis-associated protein and REG1A expression in hepatocellular carcinoma: association of pancreatitis-associated protein expression with low-stage hepatocellular carcinoma, beta-catenin mutation, and favorable prognosis. Clin Cancer Res, 2005. 11(7): p. 2568-75. 6. Yuan, R.H., et al., Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol, 2006. 209(4): p. 549-58. 7. Yuan, R.H., et al., Overexpression of KIAA0101 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. Clin Cancer Res, 2007. 13(18 Pt 1): p. 5368-76. 8. Huang, W.J., et al., Expression of hypoxic marker carbonic anhydrase IX predicts poor prognosis in resectable hepatocellular carcinoma. PLoS One, 2015. 10(3): p. e0119181. 9. Yuan, R.H., et al., Expression of bile duct transcription factor HNF1beta predicts early tumor recurrence and is a stage-independent prognostic factor in hepatocellular carcinoma. J Gastrointest Surg, 2014. 18(10): p. 1784-94. 10. Schulze, K., et al., Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet, 2015. 47(5): p. 505-11. 11. Sudo, M., et al., Short-hairpin RNA library: identification of therapeutic partners for gefitinib-resistant non-small cell lung cancer. Oncotarget, 2015. 6(2): p. 814-24. 12. Zhou, Z., et al., Identification of synthetic lethality of PRKDC in MYC-dependent human cancers by pooled shRNA screening. BMC Cancer, 2014. 14: p. 944. 13. Yoshino, S., et al., Genetic screening of new genes responsible for cellular adaptation to hypoxia using a genome-wide shRNA library. PLoS One, 2012. 7(4): p. e35590. 14. Xu, H., et al., An ShRNA Based Genetic Screen Identified Sesn2 as a Potential Tumor Suppressor in Lung Cancer via Suppression of Akt-mTOR-p70S6K Signaling. PLoS One, 2015. 10(5): p. e0124033. 15. Jinek, M., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012. 337(6096): p. 816-21. 16. Cho, S.W., et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013. 31(3): p. 230-2. 17. Chang, N., et al., Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013. 23(4): p. 465-72. 18. Wu, Y., et al., Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res, 2015. 25(1): p. 67-79. 19. Shalem, O., et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014. 343(6166): p. 84-7. 20. Schmid-Burgk, J.L., et al., A Genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) Screen Identifies NEK7 as an Essential Component of NLRP3 Inflammasome Activation. J Biol Chem, 2016. 291(1): p. 103-9. 21. Wang, T., et al., Identification and characterization of essential genes in the human genome. Science, 2015. 350(6264): p. 1096-101. 22. Ma, H., et al., A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death. Cell Rep, 2015. 12(4): p. 673-83. 23. Gostissa, M., F.W. Alt, and R. Chiarle, Mechanisms that promote and suppress chromosomal translocations in lymphocytes. Annu Rev Immunol, 2011. 29: p. 319-50. 24. Gaafar, T.M., et al., Detection of BCR/ABL Translocation in Bone Marrow Derived Mesenchymal Stem Cells in Egyptian CML Patients. Open Access Maced J Med Sci, 2015. 3(2): p. 231-6. 25. Rabbitts, T.H., et al., Mouse models of human chromosomal translocations and approaches to cancer therapy. Blood Cells Mol Dis, 2001. 27(1): p. 249-59. 26. Jiang, J., et al., Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep, 2016. 6: p. 21918. 27. Blasco, R.B., et al., Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep, 2014. 9(4): p. 1219-27. 28. Belov, A.A. and M. Mohammadi, Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb Perspect Biol, 2013. 5(6). 29. Parker, B.C., et al., Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. J Pathol, 2014. 232(1): p. 4-15. 30. Arai, Y., et al., Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology, 2014. 59(4): p. 1427-34. 31. Wu, Y.M., et al., Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov, 2013. 3(6): p. 636-47. 32. Stapleton, D., et al., The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol, 1999. 6(1): p. 44-9. 33. Heimann, R. and S. Hellman, Aging, progression, and phenotype in breast cancer. J Clin Oncol, 1998. 16(8): p. 2686-92. 34. Alcivar, A., et al., DEDD and DEDD2 associate with caspase-8/10 and signal cell death. Oncogene, 2003. 22(2): p. 291-7. 35. Roth, W., et al., Identification and characterization of DEDD2, a death effector domain-containing protein. J Biol Chem, 2002. 277(9): p. 7501-8. 36. Wu, L.L., et al., Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta, 2004. 339(1-2): p. 1-9. 37. Chen, S., et al., Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 2015. 160(6): p. 1246-60. 38. Chen, Z.A., et al., Suppression of Human Liver Cancer Cell Migration and Invasion via the GABAA Receptor. Cancer Biol Med, 2012. 9(2): p. 90-8. 39. Ripperger, T., et al., Promoter methylation of PARG1, a novel candidate tumor suppressor gene in mantle-cell lymphomas. Haematologica, 2007. 92(4): p. 460-8. 40. Pienaar, E., et al., A quantitative model of error accumulation during PCR amplification. Comput Biol Chem, 2006. 30(2): p. 102-11. 41. Mazowita, M., L. Haque, and D. Sankoff, Stability of rearrangement measures in the comparison of genome sequences. J Comput Biol, 2006. 13(2): p. 554-66. 42. Ousterout, D.G., et al., Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun, 2015. 6: p. 6244. 43. Swiech, L., et al., In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol, 2015. 33(1): p. 102-6. 44. Kabadi, A.M., et al., Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res, 2014. 42(19): p. e147. 45. Dang, Y., et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol, 2015. 16: p. 280. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50611 | - |
| dc.description.abstract | Clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system (CRISPR/Cas9 system) is a highly efficient genome editing tool. It consists of two components: a strand of ribonucleic acid called small guide RNA (sgRNA) and an enzyme called CRISPR-associated endonuclease 9 (Cas9). In this system, sgRNA directs Cas9 to a targeted DNA sequence for site-specific cleavage. Recently, the mutagenic function of CRISPR/Cas9 system is widely used in genome and cancer researches. In this study, we exploited CRISPR/Cas9 system in two topics: CRISPR/Cas9 library screening in live cancer cell line and CRISPR/Cas9-mediated chromosomal translocation between Fibroblast growth factor receptor 2 (FGFR2) gene and BicC Family RNA Binding Protein 1 (BICC1) gene. In CRISPR/Cas9 library screen, we used HepG2 cell line to produce a mixture of cells with loss-of-function mutations of genes and then made tumor formation in NOD/SCID mice by subcutaneous injection of those cells. According to the consequences of next-generation sequencing, we found that some populations of CRISPR/Cas9 knockout cells dominated in quantity in late-phase tumors, so the possible explanation is that those genes knockout by the CRISPR/Cas9 system are suppressor of tumor progression. Further experiment revealed that one of the genes identified, DEDD2, can inhibit cell death caused by oxidative stress. In CRISPR/Cas9-mediated chromosomal translocation study, we used BICC1 and FGFR2-targeting CRISPR/Cas9 plasmids to produce the predicted FGFR2-BICC1 fusion DNA products. Although this method worked, the output was low. As a result, we developed the two-target CRISPR/Cas9 plasmids to improve the efficiency by increasing the possibility of cleavage of two target genes in one single cell. However, the experiment results showed that those plasmids were unable to produce the predicted chromosomal translocation products. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:48:41Z (GMT). No. of bitstreams: 1 ntu-105-R03444005-1.pdf: 2723109 bytes, checksum: f50209d655da314284c22155cfd0b482 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝辭 II 中文摘要 III ABSTRACT IV CONTENTS VI 1. INTRODUCTION 1 1.1 Hepatocellular carcinoma 1 1.2 Functional screening of oncogenic and tumor suppressor proteins 3 1.3 CRISPR/Cas9 system 4 1.4 CRISPR/Cas9 knockout library screen 5 1.5 CRISPR/Cas9-mediated chromosomal translocation 6 1.6 FGFR2-BICC1 fusion 7 2. MATERIALS AND METHODS 9 2.1 Cell culture 9 2.2 Viral production and transduction 9 2.3 In vivo xenograft tumor formation in mice 10 2.4 Genomic DNA extraction and sgRNA analysis 11 2.5 Soft agar assay 12 2.6 MTT assay 13 2.7 Apoptosis assay 14 2.8 ELISA assay for 8-OHdG 14 2.9 Plasmids 15 2.10 RNA isolation 16 2.11 PCR and RT-PCR for FGFR2-BICC1 fusion 16 2.12 Surveyor assay 17 3. RESULTS 18 3.1 The preliminary testing of CRISPR library screening 18 3.1.1 CRISPR/Cas9 library-mediated mutagenesis promotes tumor growth in vivo 18 3.1.2 Enriched sgRNAs from the CRISPR screen in 6-week tumors 19 3.1.3 Knockout of DEDD2 showed enhanced anchorage-independence growth abil-ity in vitro and tumorigenic ability in vivo 20 3.1.4 DEDD2 knockout HepG2 cell line showed higher survival rate after H2O2 treatment 21 3.2 The second CRISPR screen 23 3.2.1 Dynamic evolution of sgRNA representation during tumor growth 24 3.2.2 Enriched sgRNAs from the CRISPR screen in 6-week tumors 25 3.3 CRISPR-mediated chromosomal rearrangement 26 3.3.1 Generation of FGFR2-BICC1 rearrangements and FGFR2-BICC1 fusion mRNA by the CRISPR/Cas9 System in vitro 27 3.3.2 The two-target New plasmids did not produce the FGFR2-BICC1 fusion 28 4. DISCUSSION 30 4.1 The common problems between the preliminary testing and the second CRISPR screen 30 4.2 The inconsistency between our CRISPR experiments and previous studies 31 4.3 The efficiency of generation of CRISPR-mediated FGFR2-BICC1 translocations was low 32 4.4 The FGFR2-BICC1 fusion mRNA was not detected 34 4.5 The two-target plasmid method needs improvement 34 4.6 Future improvements of our translocation experiment 35 5. FIGURES AND TABLES 36 5.1 Tables 36 5.2 Figures 42 REFERENCES 57 | |
| dc.language.iso | en | |
| dc.subject | 染色體轉位 | zh_TW |
| dc.subject | BICC1 | zh_TW |
| dc.subject | FGFR2 | zh_TW |
| dc.subject | 染色體轉位 | zh_TW |
| dc.subject | library screen | zh_TW |
| dc.subject | CRISPR/Cas9 | zh_TW |
| dc.subject | BICC1 | zh_TW |
| dc.subject | CRISPR/Cas9 | zh_TW |
| dc.subject | library screen | zh_TW |
| dc.subject | FGFR2 | zh_TW |
| dc.subject | CRISPR/Cas9 | en |
| dc.subject | CRISPR/Cas9 | en |
| dc.subject | BICC1 | en |
| dc.subject | library screen | en |
| dc.subject | chromosomal translocation | en |
| dc.subject | FGFR2 | en |
| dc.subject | BICC1 | en |
| dc.subject | library screen | en |
| dc.subject | chromosomal translocation | en |
| dc.subject | FGFR2 | en |
| dc.title | CRISPR/Cas9系統在肝癌研究之應用 | zh_TW |
| dc.title | Applications of CRISPR/Cas9 System in Liver Cancer Research | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張亨?,陳彥榮,袁瑞晃 | |
| dc.subject.keyword | CRISPR/Cas9,library screen,染色體轉位,FGFR2,BICC1, | zh_TW |
| dc.subject.keyword | CRISPR/Cas9,library screen,chromosomal translocation,FGFR2,BICC1, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201601097 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 病理學研究所 | zh_TW |
| 顯示於系所單位: | 病理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 2.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
