Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50602
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor闕蓓德(Pei-Te Chiueh)
dc.contributor.authorChih-Chun Liuen
dc.contributor.author劉致均zh_TW
dc.date.accessioned2021-06-15T12:48:14Z-
dc.date.available2018-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-21
dc.identifier.citationAli, S., Tirumala, S. S., & Sarrafzadeh, A. (2014). SVM aggregation modelling for spatio-temporal air pollution analysis. Paper presented at the Multi-Topic Conference (INMIC), 2014 IEEE 17th International.
Amodio, M., Caselli, M., de Gennaro, G., & Tutino, M. (2009). Particulate PAHs in two urban areas of Southern Italy: impact of the sources, meteorological and background conditions on air quality. Environmental Research, 109(7), 812-820.
Bandeira, J. M., Coelho, M. C., Sa, M. E., Tavares, R., & Borrego, C. (2011). Impact of land use on urban mobility patterns, emissions and air quality in a Portuguese medium-sized city. Sci Total Environ, 409(6), 1154-1163. doi:10.1016/j.scitotenv.2010.12.008
Basak, D., Pal, S., & Patranabis, D. C. (2007). Support vector regression. Neural Information Processing-Letters and Reviews, 11(10), 203-224.
Briggs, D. J., Collins, S., Elliott, P., Fischer, P., Kingham, S., Lebret, E., . . . Van Der Veen, A. (1997). Mapping urban air pollution using GIS: a regression-based approach. International Journal of Geographical Information Science, 11(7), 699-718.
Briggs, D. J., de Hoogh, C., Gulliver, J., Wills, J., Elliott, P., Kingham, S., & Smallbone, K. (2000). A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. Science of the total environment, 253(1), 151-167.
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
Cope, M., Hess, D., Lee, S., Tory, K., Hess, D., Lee, S., . . . Russell, A. (2008). Traffic and Meteorological Impacts on Near-Road Air Quality: Summary of Methods and Trends from the Raleigh Near-Road Study. Journal of the Air & Waste Management Association, 58(7), 865-878. doi:10.3155/1047-3289.58.7.865
De Vlieger, I., De Keukeleere, D., & Kretzschmar, J. (2000). Environmental effects of driving behaviour and congestion related to passenger cars. Atmospheric Environment, 34(27), 4649-4655.
Dockery, D. W., & Pope, C. A. (1994). Acute respiratory effects of particulate air pollution. Annual review of public health, 15(1), 107-132.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., . . . Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. New England journal of medicine, 329(24), 1753-1759.
Dragomir, E. G., & Oprea, M. (2014). Air quality Forecasting by using Nonlinear modeling Methods Nonlinear Dynamics of Electronic Systems (pp. 387-394): Springer.
Fenger, J. (1999). Urban air quality. Atmospheric Environment, 33(29), 4877-4900.
García Nieto, P. J., Combarro, E. F., del Coz Díaz, J. J., & Montañés, E. (2013). A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): A case study. Applied Mathematics and Computation, 219(17), 8923-8937. doi:10.1016/j.amc.2013.03.018
Ghazali, N. A., Ramli, N. A., Yahaya, A. S., Yusof, N. F. F. M., Sansuddin, N., & Al Madhoun, W. A. (2010). Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environmental monitoring and assessment, 165(1-4), 475-489.
Givoni, B. (1991). Impact of planted areas on urban environmental quality: a review. Atmospheric Environment. Part B. Urban Atmosphere, 25(3), 289-299.
Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14.
Gupta, P., & Christopher, S. A. (2009). Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Journal of Geophysical Research: Atmospheres, 114(D14).
Harrison, R. M., & Yin, J. (2000). Particulate matter in the atmosphere: which particle properties are important for its effects on health? Science of the total environment, 249(1), 85-101.
Hoek, G., Beelen, R., de Hoogh, K., Vienneau, D., Gulliver, J., Fischer, P., & Briggs, D. (2008). A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmospheric Environment, 42(33), 7561-7578. doi:10.1016/j.atmosenv.2008.05.057
Hong, Y.-C., Lee, J.-T., Kim, H., Ha, E.-H., Schwartz, J., & Christiani, D. C. (2002). Effects of air pollutants on acute stroke mortality. Environmental Health Perspectives, 110(2), 187.
Hsieh, H.-P., Lin, S.-D., & Zheng, Y. (2015). Inferring air quality for station location recommendation based on urban big data. Paper presented at the Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2003). A practical guide to support vector classification.
Isukapalli, S. S. (1999). Uncertainty analysis of transport-transformation models. Citeseer.
Johnson, M., Isakov, V., Touma, J., Mukerjee, S., & Özkaynak, H. (2010). Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmospheric Environment, 44(30), 3660-3668.
Kalkstein, L. S., & Corrigan, P. (1986). A synoptic climatological approach for geographical analysis: assessment of sulfur dioxide concentrations. Annals of the Association of American Geographers, 76(3), 381-395.
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment, 120, 475-483.
Katsouyanni, K., Pantazopoulou, A., Touloumi, G., Tselepidaki, I., Moustris, K., Asimakopoulos, D., Poulopoulou, G., Trichopoulos, D. (1993). Evidence for interaction between air pollution and high temperature in the causation of excess mortality. Archives of Environmental Health: An International Journal, 48(4), 235-242.
Kundu, S., & Stone, E. A. (2014). Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environmental Science: Processes & Impacts, 16(6), 1360-1370.
Li, S.-T., & Shue, L.-Y. (2004). Data mining to aid policy making in air pollution management. Expert Systems with Applications, 27(3), 331-340. doi:10.1016/j.eswa.2004.05.015
Lighty, J. S., Veranth, J. M., & Sarofim, A. F. (2000). Combustion aerosols: factors governing their size and composition and implications to human health. Journal of the Air & Waste Management Association, 50(9), 1565-1618.
Lu, W. Z., & Wang, W. J. (2005). Potential assessment of the 'support vector machine' method in forecasting ambient air pollutant trends. Chemosphere, 59(5), 693-701. doi:10.1016/j.chemosphere.2004.10.032
Nielsen, T. (1996). Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmospheric Environment, 30(20), 3481-3490.
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56(6), 709-742.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. (1994). Sources of fine organic aerosol. 6. Cigaret smoke in the urban atmosphere. Environmental Science & Technology, 28(7), 1375-1388.
Sánchez, A. S., Nieto, P. G., Fernández, P. R., del Coz Díaz, J., & Iglesias-Rodríguez, F. J. (2011). Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Mathematical and Computer Modelling, 54(5), 1453-1466.
Shan, W., Yin, Y., Zhang, J., Ji, X., & Deng, X. (2009). Surface ozone and meteorological condition in a single year at an urban site in central–eastern China. Environmental monitoring and assessment, 151(1-4), 127-141.
Singh, K. P., Gupta, S., Kumar, A., & Shukla, S. P. (2012). Linear and nonlinear modeling approaches for urban air quality prediction. Science of the total environment, 426, 244-255.
Singh, K. P., Gupta, S., & Rai, P. (2013). Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmospheric Environment, 80, 426-437. doi:10.1016/j.atmosenv.2013.08.023
Streets, D., & Waldhoff, S. (2000). Present and future emissions of air pollutants in China:: SO2, NOx, and CO. Atmospheric Environment, 34(3), 363-374.
Suárez Sánchez, A., García Nieto, P. J., Iglesias-Rodríguez, F. J., & Vilán Vilán, J. A. (2013). Nonlinear Air Quality Modeling Using Support Vector Machines in Gijón Urban Area (Northern Spain) at Local Scale. International Journal of Nonlinear Sciences and Numerical Simulation, 14(5). doi:10.1515/ijnsns-2012-0119
USEPA. (2006). Guidelines for the Reporting of Daily Air Quality –The Air Quality Index (AQI)
van Bohemen, H. D., & Janssen van de Laak, W. H. (2003). The influence of road infrastructure and traffic on soil, water, and air quality. Environ Manage, 31(1), 50-68. doi:10.1007/s00267-002-2802-8
Vapnik, V. N. (1995). The Nature of Statistical Learning Theory.
Vong, C.-M., Ip, W.-F., Wong, P.-k., & Yang, J.-y. (2012). Short-Term Prediction of Air Pollution in Macau Using Support Vector Machines. Journal of Control Science and Engineering, 2012, 1-11. doi:10.1155/2012/518032
Wang, P., Liu, Y., Qin, Z., & Zhang, G. (2015). A novel hybrid forecasting model for PM(1)(0) and SO(2) daily concentrations. Sci Total Environ, 505, 1202-1212. doi:10.1016/j.scitotenv.2014.10.078
Wang, W., Men, C., & Lu, W. (2008). Online prediction model based on support vector machine. Neurocomputing, 71(4), 550-558.
Whiteman, C. D., Hoch, S. W., Horel, J. D., & Charland, A. (2014). Relationship between particulate air pollution and meteorological variables in Utah's Salt Lake Valley. Atmospheric Environment, 94, 742-753.
Xian, G. (2007). Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations. International Journal of Remote Sensing, 28(24), 5427-5445. doi:10.1080/01431160701227653
Yeganeh, B., Motlagh, M. S. P., Rashidi, Y., & Kamalan, H. (2012). Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model. Atmospheric Environment, 55, 357-365. doi:10.1016/j.atmosenv.2012.02.092
Zhang, J., & Smith, K. R. (2007). Household air pollution from coal and biomass fuels in China: measurements, health impacts, and interventions. Environmental Health Perspectives, 848-855.
Zheng, Y., Liu, F., & Hsieh, H.-P. (2013). U-Air: When urban air quality inference meets big data. Paper presented at the Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50602-
dc.description.abstract都市空氣品質預測之重要性已被廣泛認可,準確的空氣品質預測可使政府與民眾採取即時的預防、減緩措施。長久以來,空氣品質傳輸模式被大量的研究與應用,然而傳輸模式有其限制,如:準確的排放源資料取得困難、大規模模擬之運算時間較長等,因而具有較為省時、操作容易、調整彈性較大等特性之統計相關預測模型(亦常被稱為機器學習)近年來蓬勃發展。然而大多文獻僅研究時間變異下氣象因子及污染物濃度與空氣品質之相關性,相對較少探討完整時空結合之預測。
本研究以機器學習方法-支持向量機(Support vector machine, SVM)作為基礎,配合地理資訊系統(Geographic information system, GIS)處理空間資料,發展出有效結合時間與空間預測的架構,研究範圍則為北部空品區。本研究首先透過SVM獲取空氣品質指標(Air quality index, AQI)與時間相關特徵(現時空氣品質指標與氣象參數)之訓練模式,並利用此訓練模式完成已知測站的未來空氣品質預測;而後利用此預測值與空間相關特徵(土地利用、交通路網、人口、經濟活動、點源相關、地表高程)之關聯性推估未知空間之未來空氣品質。
驗證結果顯示,僅進行時間預測之準確性很高,四個季節未來一小時的均方根誤差(Root mean square error, RMSE)皆小於4,亦能在更遠的未來時間點(如:未來6小時、12小時)獲得足夠準確的結果。而將時間預測之結果輸入至空間推估後,準確率有較為明顯之下降,四季之RMSE約為10~16,主因可能是空間資料並非動態,較難精確呈現空氣品質之空間變異。空間推估中,與空氣品質最為相關之特徵與人口活動息息相關,如:農林用地面積、交通用地面積、居住用地面積、電力使用量、市區道路密度等,而工業相關之特徵則因為北部空品區內工業相對不發達而影響不大。與其他文獻之機器學習預測表現進行比較,本研究之準確性則相對較低,然而差距並不大,且相較其他文獻使用之方法具備了空間預測之能力。
本研究之結果證實了在實務上進行較現行空氣品質預報更細之時空尺度預測乃是可行的,更細尺度的空氣品質預報可以讓決策者有更精確的依據,此架構也提供了後續有關機器學習研究進行空氣品質之時空預測的參考。
zh_TW
dc.description.abstractUrban air quality prediction has been considered imperative because it allows citizens to properly respond to poor air quality according to the forecasts. Compared to transport models, statistical methods, usually referring to machine learning, have been more and more popular for air quality prediction in this decade owing to their time-saving and easy-to-use characteristics. However, limited to difficulty in data acquisition, combination of temporal and spatial prediction is still inconclusive.
This study aims to utilize support vector machine (SVM), a machine learning algorithm, to predict air quality of unknown space and time with temporal and spatial features extracted by Geographic information system (GIS). The Northern Air Basin of Taiwan was selected as study site; 20 monitoring stations were chosen as training stations (also reference stations) while the rest of 5 stations were testing stations, whose data were not involved in training process. Temporal prediction was first executed in the reference stations, and then the predicted air quality index (AQI) were used for spatial inference to obtain the future AQI of unknown locations.
The verification revealed high accuracy of future AQI (the next one hour) prediction with low root mean squared error (RMSE) under 4; nonetheless, higher RMSE over 10 was calculated in spatial inference stage. The performance of spatial inference in winter was noticeably better than the performance in other three seasons probably due to the low spatial divergence of air quality in winter. This “spatio-temporal air quality prediction” is found slightly inaccurate in comparison to other machine learning methods demonstrated in other studies by viewing normalized RMSE; nevertheless, this proposed method is able to conduct spatial prediction, while others can only predict air quality temporally.
Despite the fact that the spatial inference only own acceptable accuracy and some obstacles still remain, the framework is feasible in practice with the controlled errors. Further application, like better policy making or more delicate forecasts announced by mobile devices, may be realized under this framework.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:48:14Z (GMT). No. of bitstreams: 1
ntu-105-R03541202-1.pdf: 3735404 bytes, checksum: 692885c3ce2f63670c29a57c94acc501 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents謝辭 ii
中文摘要 iii
Abstract v
Chapter 1 Introduction 1
Chapter 2 Literature Review 6
2.1 Influential Factors of Air Quality 6
2.2 Application of machine learning in air quality prediction 9
2.3 Limitations of machine learning application to air quality prediction 12
2.4 Summary 15
Chapter 3 Methodology 16
3.1 Conceptual Model of Process 16
3.1.1 Temporal Prediction 16
3.1.2 Spatial Inference 17
3.2 Study Area 19
3.3 Data Extraction 22
3.3.1 Temporal features 22
3.3.2 Spatial Features 26
3.4 SVM Algorithm 32
3.5 Evaluation of performance 37
Chapter 4 Results and Discussion 38
4.1 Performance of Temporal Prediction 38
4.2 Performance of Spatial Inference 43
4.3 Advantages and Application of Spatio-Temporal Air Quality Prediction 51
4.3.1 Advantages Compared to Current Forecasts and Other Methods 51
4.3.2 Management with spatio-temporal air quality prediction 55
Chapter 5 Conclusions 61
Bibliography 64
dc.language.isoen
dc.subject空氣品質預測zh_TW
dc.subject支持向量機zh_TW
dc.subject機器學習zh_TW
dc.subject時空特徵zh_TW
dc.subject地理資訊系統zh_TW
dc.subject空氣品質預測zh_TW
dc.subject支持向量機zh_TW
dc.subject機器學習zh_TW
dc.subject時空特徵zh_TW
dc.subject地理資訊系統zh_TW
dc.subjectAir quality predictionen
dc.subjectAir quality predictionen
dc.subjectGeographic information systemen
dc.subjectSpatio-temporal featuresen
dc.subjectMachine learningen
dc.subjectSupport vector machineen
dc.subjectGeographic information systemen
dc.subjectSpatio-temporal featuresen
dc.subjectMachine learningen
dc.subjectSupport vector machineen
dc.title以支持向量機方法透過時空特徵進行都市空氣品質之預測zh_TW
dc.titleUsing Support Vector Machine Method with Spatio-temporal Features to Predict Urban Air Qualityen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馬鴻文(Hwong-Wen Ma),席行正(Hsing-Cheng Hsi)
dc.subject.keyword空氣品質預測,支持向量機,機器學習,時空特徵,地理資訊系統,zh_TW
dc.subject.keywordAir quality prediction,Support vector machine,Machine learning,Spatio-temporal features,Geographic information system,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201601224
dc.rights.note有償授權
dc.date.accepted2016-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
Appears in Collections:環境工程學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
3.65 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved