Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王致恬
dc.contributor.authorWen-Chi Shuen
dc.contributor.author舒玟綺zh_TW
dc.date.accessioned2021-06-15T12:47:05Z-
dc.date.available2021-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-22
dc.identifier.citationAckman, J.B., Burbridge, T.J., and Crair, M.C. (2012). Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219-225.
Badea, T.C., and Nathans, J. (2011). Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision research 51, 269-279.
Bai, J., Wang, C.T., Richards, D.A., Jackson, M.B., and Chapman, E.R. (2004). Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41, 929-942.
Bansal, A., Singer, J.H., Hwang, B.J., Xu, W., Beaudet, A., and Feller, M.B. (2000). Mice lacking specific nicotinic acetylcholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 7672-7681.
Bassett, E.A., and Wallace, V.A. (2012). Cell fate determination in the vertebrate retina. Trends in neurosciences 35, 565-573.
Bjartmar, L., Huberman, A.D., Ullian, E.M., Renteria, R.C., Liu, X., Xu, W., Prezioso, J., Susman, M.W., Stellwagen, D., Stokes, C.C., et al. (2006). Neuronal pentraxins mediate synaptic refinement in the developing visual system. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 6269-6281.
Braekevelt, C.R., and Hollenberg, M.J. (1970). The development of the retina of the albino rat. The American journal of anatomy 127, 281-301.
Butz, S., Fernandez-Chacon, R., Schmitz, F., Jahn, R., and Sudhof, T.C. (1999). The subcellular localizations of atypical synaptotagmins III and VI. Synaptotagmin III is enriched in synapses and synaptic plasma membranes but not in synaptic vesicles. The Journal of biological chemistry 274, 18290-18296.
Cang, J., Renteria, R.C., Kaneko, M., Liu, X., Copenhagen, D.R., and Stryker, M.P. (2005). Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48, 797-809.
Catsicas, M., Bonness, V., Becker, D., and Mobbs, P. (1998). Spontaneous Ca2+ transients and their transmission in the developing chick retina. Current biology : CB 8, 283-286.
Chiang, C.W., Chen, Y.C., Lu, J.C., Hsiao, Y.T., Chang, C.W., Huang, P.C., Chang, Y.T., Chang, P.Y., and Wang, C.T. (2012). Synaptotagmin I regulates patterned spontaneous activity in the developing rat retina via calcium binding to the C2AB domains. PloS one 7, e47465.
Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., and Farsiu, S. (2010). Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics express 18, 19413-19428.
Chung, C.T., Niemela, S.L., and Miller, R.H. (1989). One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proceedings of the National Academy of Sciences of the United States of America 86, 2172–2175.
Corriveau, R.A., Huh, G.S., and Shatz, C.J. (1998). Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21, 505-520.
Craxton, M. (2010). A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes--an open access resource for neuroscience and evolutionary biology. BMC genomics 11, 37.
Dowling, J.E., and Boycott, B.B. (1966). Organization of the primate retina: electron microscopy. Proceedings of the Royal Society of London Series B, Containing papers of a Biological character Royal Society (Great Britain) 166, 80-111.
Dunn, T.A., Wang, C.T., Colicos, M.A., Zaccolo, M., DiPilato, L.M., Zhang, J., Tsien, R.Y., and Feller, M.B. (2006). Imaging of cAMP levels and protein kinase A activity reveals that retinal waves drive oscillations in second-messenger cascades. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 12807-12815.
Freedman, E.G., and Sparks, D.L. (1997). Activity of cells in the deeper layers of the superior colliculus of the rhesus monkey: evidence for a gaze displacement command. Journal of neurophysiology 78, 1669-1690.
Fukuda, M., and Mikoshiba, K. (2000). Distinct self-oligomerization activities of synaptotagmin family. Unique calcium-dependent oligomerization properties of synaptotagmin VII. The Journal of biological chemistry 275, 28180-28185.
Fukuda, M., and Mikoshiba, K. (2001). Synaptotagmin-like protein 1-3: a novel family of C-terminal-type tandem C2 proteins. Biochemical and biophysical research communications 281, 1226-1233.
Gamlin, P.D. (2006). The pretectum: connections and oculomotor-related roles. Progress in brain research 151, 379-405.
Gao, Z., Reavey-Cantwell, J., Young, R.A., Jegier, P., and Wolf, B.A. (2000). Synaptotagmin III/VII isoforms mediate Ca2+-induced insulin secretion in pancreatic islet beta -cells. The Journal of biological chemistry 275, 36079-36085.
Geppert, M., Goda, Y., Hammer, R.E., Li, C., Rosahl, T.W., Stevens, C.F., and Sudhof, T.C. (1994). Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717-727.
Godement, P., Salaun, J., and Imbert, M. (1984). Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. The Journal of comparative neurology 230, 552-575.
Hilbush, B.S., and Morgan, J.I. (1994). A third synaptotagmin gene, Syt3, in the mouse. Proceedings of the National Academy of Sciences of the United States of America 91, 8195-8199.
Huang, P.C., Hsiao, Y.T., Kao, S.Y., Chen, C.F., Chen, Y.C., Chiang, C.W., Lee, C.F., Lu, J.C., Chern, Y., and Wang, C.T. (2014). Adenosine A(2A) receptor up-regulates retinal wave frequency via starburst amacrine cells in the developing rat retina. PloS one 9, e95090.
Jaubert-Miazza, L., Green, E., Lo, F.S., Bui, K., Mills, J., and Guido, W. (2005). Structural and functional composition of the developing retinogeniculate pathway in the mouse. Visual neuroscience 22, 661-676.
Kochubey, O., Babai, N., and Schneggenburger, R. (2016). A Synaptotagmin Isoform Switch during the Development of an Identified CNS Synapse. Neuron 90, 984-999.
Kolb, H. (1979). The inner plexiform layer in the retina of the cat: electron microscopic observations. Journal of neurocytology 8, 295-329.
Littleton, J.T., Stern, M., Schulze, K., Perin, M., and Bellen, H.J. (1993). Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2+)-activated neurotransmitter release. Cell 74, 1125-1134.
Marqueze, B., Boudier, J.A., Mizuta, M., Inagaki, N., Seino, S., and Seagar, M. (1995). Cellular localization of synaptotagmin I, II, and III mRNAs in the central nervous system and pituitary and adrenal glands of the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience 15, 4906-4917.
Matthew, W.D., Tsavaler, L., and Reichardt, L.F. (1981). Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. The Journal of cell biology 91, 257-269.
McLaughlin, T., Torborg, C.L., Feller, M.B., and O'Leary, D.D. (2003). Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40, 1147-1160.
McLoon, S.C., and Barnes, R.B. (1989). Early differentiation of retinal ganglion cells: an axonal protein expressed by premigratory and migrating retinal ganglion cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 9, 1424-1432.
Meister, M., Wong, R.O., Baylor, D.A., and Shatz, C.J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science (New York, NY) 252, 939-943.
Mizuta, M., Inagaki, N., Nemoto, Y., Matsukura, S., Takahashi, M., and Seino, S. (1994). Synaptotagmin III is a novel isoform of rat synaptotagmin expressed in endocrine and neuronal cells. The Journal of biological chemistry 269, 11675-11678.
Naska, S., Cenni, M.C., Menna, E., and Maffei, L. (2004). ERK signaling is required for eye-specific retino-geniculate segregation. Development (Cambridge, England) 131, 3559-3570.
Nonet, M.L., Grundahl, K., Meyer, B.J., and Rand, J.B. (1993). Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell 73, 1291-1305.
O'Benar, J.D. (1976). Electrophysiology of neural units in goldfish optic tectum. Brain research bulletin 1, 529-541.
O'Leary, D.D., Fawcett, J.W., and Cowan, W.M. (1986). Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. The Journal of neuroscience : the official journal of the Society for Neuroscience 6, 3692-3705.
Penn, A.A., Riquelme, P.A., Feller, M.B., and Shatz, C.J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science (New York, NY) 279, 2108-2112.
Perin, M.S., Fried, V.A., Mignery, G.A., Jahn, R., and Sudhof, T.C. (1990). Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260-263.
Rebsam, A., Petros, T.J., and Mason, C.A. (2009). Switching retinogeniculate axon laterality leads to normal targeting but abnormal eye-specific segregation that is activity dependent. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 14855-14863.
Reese, B.E. (2011a). Development of the retina and optic pathway. Vision research 51, 613-632.
Reese, B.E. (2011b). Development of the Retina and Optic Pathway. Vision research 51, 613-632.
Renna, J.M., Weng, S., and Berson, D.M. (2011). Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nat Neurosci 14, 827-829.
Rich, K.A., Zhan, Y., and Blanks, J.C. (1997). Migration and synaptogenesis of cone photoreceptors in the developing mouse retina. The Journal of comparative neurology 388, 47-63.
Schnitzer, J., and Rusoff, A.C. (1984). Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages. The Journal of neuroscience : the official journal of the Society for Neuroscience 4, 2948-2955.
Sernagor, E., and Grzywacz, N.M. (1995). Emergence of complex receptive field properties of ganglion cells in the developing turtle retina. Journal of neurophysiology 73, 1355-1364.
Singer, J.H., Mirotznik, R.R., and Feller, M.B. (2001). Potentiation of L-type calcium channels reveals nonsynaptic mechanisms that correlate spontaneous activity in the developing mammalian retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 8514-8522.
Sparks, D.L., and Mays, L.E. (1990). Signal transformations required for the generation of saccadic eye movements. Annual review of neuroscience 13, 309-336.
Speer, C.M., Sun, C., and Chapman, B. (2011). Activity-dependent disruption of intersublaminar spaces and ABAKAN expression does not impact functional on and off organization in the ferret retinogeniculate system. Neural development 6, 7.
Stafford, B.K., Sher, A., Litke, A.M., and Feldheim, D.A. (2009). Spatial-temporal patterns of retinal waves underlying activity-dependent refinement of retinofugal projections. Neuron 64, 200-212.
Stevens, B., Allen, N.J., Vazquez, L.E., Howell, G.R., Christopherson, K.S., Nouri, N., Micheva, K.D., Mehalow, A.K., Huberman, A.D., Stafford, B., et al. (2007). The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164-1178.
Straschill, M., and Hoffmann, K.P. (1970). Activity of movement sensitive neurons of the cat's tectum opticum during spontaneous eye movements. Experimental brain research 11, 318-326.
Sudhof, T.C., and Rizo, J. (2011). Synaptic vesicle exocytosis. Cold Spring Harbor perspectives in biology 3.
Sutton, R.B., Ernst, J.A., and Brunger, A.T. (1999). Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction. The Journal of cell biology 147, 589-598.
Syed, M.M., Lee, S., Zheng, J., and Zhou, Z.J. (2004). Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. The Journal of physiology 560, 533-549.
Szikra, T., Trenholm, S., Drinnenberg, A., Juttner, J., Raics, Z., Farrow, K., Biel, M., Awatramani, G., Clark, D.A., Sahel, J.-A., et al. (2014). Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition. Nat Neurosci 17, 1728-1735.
Torborg, C., Wang, C.T., Muir-Robinson, G., and Feller, M.B. (2004). L-type calcium channel agonist induces correlated depolarizations in mice lacking the beta2 subunit nAChRs. Vision research 44, 3347-3355.
Torborg, C.L., and Feller, M.B. (2004). Unbiased analysis of bulk axonal segregation patterns. Journal of neuroscience methods 135, 17-26.
Torborg, C.L., Hansen, K.A., and Feller, M.B. (2005). High frequency, synchronized bursting drives eye-specific segregation of retinogeniculate projections. Nat Neurosci 8, 72-78.
Wang, C.T., Bai, J., Chang, P.Y., Chapman, E.R., and Jackson, M.B. (2006). Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation. The Journal of physiology 570, 295-307.
Wang, C.T., Blankenship, A.G., Anishchenko, A., Elstrott, J., Fikhman, M., Nakanishi, S., and Feller, M.B. (2007). GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 9130-9140.
Wang, C.T., Lu, J.C., Bai, J., Chang, P.Y., Martin, T.F., Chapman, E.R., and Jackson, M.B. (2003). Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424, 943-947.
Xu, H.P., Furman, M., Mineur, Y.S., Chen, H., King, S.L., Zenisek, D., Zhou, Z.J., Butts, D.A., Tian, N., Picciotto, M.R., et al. (2011). An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 70, 1115-1127.
Zhang, Z., Hui, E., Chapman, E.R., and Jackson, M.B. (2010). Regulation of exocytosis and fusion pores by synaptotagmin-effector interactions. Molecular biology of the cell 21, 2821-2831.
Zhou, Z.J. (2001). A critical role of the strychnine-sensitive glycinergic system in spontaneous retinal waves of the developing rabbit. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 5158-5168.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50578-
dc.description.abstract視覺網路發育的過程中,視網膜上的神經細胞會出現大規模、有規律性的自發性放電現象,稱為視網膜波。過去的研究顯示,第二期視網膜波對於完成視網膜至腦部的投射非常重要,這個時期的視網膜波由星狀無軸突細胞(Starburst amacrine cells; SACs)釋放乙醯膽鹼及-氨基丁酸(GABA)至視網膜節細胞(Retinal ganglion cells; RGCs),RGCs會進而產生神經衝動並傳遞至腦部不同的投射區,其中研究較透徹的為背外側膝狀體(dorsal-lateral geniculate nucleus; dLGN),會有特殊的兩眼投射顯著分離現象(eye-specific segregation)。以大鼠來說,第二期視網膜波發生於仔鼠出生當天至出生後第九天,其中最重要的時期約在出生後第四至第八天,在此時期中沒有神經傳遞或者神經傳遞訊號較弱的神經末梢會被修剪,使訊號能夠集中投射且與腦部的神經元有較緊密的結合。目前普遍認為視網膜的時空傳播特性是完成正確投射的線索,例如視網膜波的頻率、多少細胞一起參與或一次的自發性放電有多少電流的湧入……等。雖然我們尚不了解視網膜波與正確投射的形成是由那些傳播特性所調控,但之前發現只要此時期的波有部分特性的改變,就容易改變視神經投射區的分離現象。
在我們實驗室過去的研究中發現第三型突觸連結蛋白(Synaptotagmin III; Syt III),會於仔鼠出生後第四至六天大量表現於RGCs,除此之外,Syt III也會表現於SACs中。Syt III是屬於Syt家族中的一員,它們大多被發現在神經細胞中,並扮演著接收鈣離子引發胞吐作用的角色。因為Syt III與釋放神經傳導物質相關,在此篇研究中我們利用過量表現Syt III或其突變株以及紀錄視網膜波同步的鈣離子動態變化,探討Syt III在視網膜波中所可能扮演的角色。首先,我們將正常的Syt III與降低鈣離子接收能力的Syt III 突變株(Syt III-C2AB*)過量表現於SACs或RGCs中,觀察其視網膜波是否有時空特性的改變。結果顯示,不管是在SACs或是RGCs中,過量表現Syt III-C2AB*與Syt III的組別相比,其視網膜波的頻率會下降;除此之外,RGCs中,Syt III也會降低鄰近細胞一起參與視網膜波的同步性 (亦即降低空間傳遞範圍)。根據此研究我們得知,Syt III會透過與鈣離子的結合調控視網膜波的傳遞。
因為Syt III會在RGCs中影響模式化放電現象的空間傳播特性,我們藉由文獻與相關研究推論Syt III在RGCs中可能藉由釋放麩氨酸(glutamate)影響SACs,進而調控視網膜波的傳播。因此,我們在視網膜波的紀錄中加入離子型麩氨酸受器拮抗劑(ionotropic glutamate receptor antagonists, iGluR antagonists),發現Syt III過量表現於RGCs中所造成視網膜波頻率增加的效應會被抑制,因而得知Syt III在RGCs中能藉由glutamate的釋放增加視網膜波的頻率。最後,為了探討Syt III在RGCs中,若表現於視網膜發育的關鍵時期對視神經投射的影響,我們設計了在活體內表現外源性DNA的方式,配合追蹤染劑的使用,發現Syt III若表現於單一眼,同側dLGN的分離現象會顯著下降。因此,我們發現Syt III表現於RGCs可調控第二期視網膜波的傳遞,並進而影響同側腦區的投射。
zh_TW
dc.description.abstractPatterned spontaneous activity in developing retina, termed retinal waves, appears during the critical period of visual circuit refinement. Stage II retinal waves, critical for establishing the eye-specific segregation of retinogeniculate and retinocollicular projections, are mediated by neurotransmitter release from starburst amacrine cells (SACs) via Ca2+-dependent exocytosis, affecting neighboring SACs and retinal ganglion cells (RGCs). We previously found that the expression of synaptotagmin III (Syt III), a Ca2+ sensor protein in vesicle release, is upregulated in rat RGCs and optic nerves during P4-P6 (P4-P8 in rodents as the critical period for eye-specific segregation). Moreover, Syt III regulates the kinetics of Ca2+-dependent exocytosis through Ca2+ binding to the C2A and C2B domains. However, how and why Ca2+ binding to Syt III regulates stage II waves remain unknown. In this study, we overexpressed Syt III or Syt III-C2AB* (a mutant harboring the abolished Ca2+-binding sites) in SACs or RGCs by the cell-type specific promoters, and further performed live Ca2+ imaging to measure the subsequent changes on wave properties. First, we found that overexpressing Syt III-C2AB* in SACs decreased the wave frequency compared to Syt III. Moreover, in neonatal RGCs, Syt III dramatically increased the frequency and decreased the spatial correlation of retinal waves, but Syt III-C2AB* did not. These results suggest that Syt III in SACs or RGCs can regulate the kinetics of retinal waves through Ca2+ binding to its C2AB domains. However, Syt III in RGCs plays a relatively profound role in wave regulation compared to Syt III in SACs. Previous studies showed that RGCs are the source of glutamate release in developing retinas. To further investigate how Syt III in RGCs modulates stage-II waves, we applied ionotropic glutamate receptor antagonists and found that the frequency of wave-associated Ca2+ transients was decreased to the same level in retinas overexpressing control, Syt III, or Syt III-C2AB*. Therefore, Syt III in developing RGCs can promote glutamatergic transmission between RGCs and SACs, thus affecting the wave properties. Finally, by using in vivo electroporation, we transfected P3 rat RGCs with Syt III and found the aberrant pattern in ipsilateral retinogeniculate projections. Together, our results suggest that Syt III in developing RGCs plays an important role in regulating patterned spontaneous activity and visual circuit development during a critical development period.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:47:05Z (GMT). No. of bitstreams: 1
ntu-105-R03b43001-1.pdf: 5895276 bytes, checksum: 21721d9cd6d155fc72cf830ab9f61be1 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
中文摘要 III
Abstract V
Abbreviations VII
Contents XI
Chapter I 1
Introduction 1
1.1 The visual system - Retinal structure and visual transduction 1
1.2 Retinal development 2
1.3 Stage II retinal waves and eye-specific segregation 3
1.4 Synaptic transmission during stage II retinal waves 6
1.5 Chemical synaptic transmission and Ca2+-dependent exocytosis 7
1.6 Synaptotagmin 8
1.7 Synaptotagmin III 10
1.8 Objectives of the study 11
Chapter II 13
Materials and Methods 13
2.1 Plasmid preparation 13
2.2 Animals 17
2.3 Dissection of retinas 17
2.4 Retinal explant culture and exo vivo transfection 18
2.5 Immunostaining of retinal dissociated cells 20
2.6 Live Ca2+ imaging 22
2.7 Data analysis of Ca2+ imaging 23
2.8 Pharmacology 25
2.9 In vivo electroporation of retinas 25
2.10 Immunostaining of whole-mount retinas 26
2.11 Anterograde tracer injection, tissue fixation, and cryosection for retinogeniculate projections 27
2.12 Immunostaining of optic nerves 28
2.13 RNA extraction from whole-mount retinas and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) 29
2.14 Quantification of LGN images 30
Chapter III 32
Results 32
3.1 Relative expression levels of Syt III in SACs after exo vivo transfection 32
3.2 Weakened Ca2+ binding to the C2AB domains of Syt III in SACs decreases the frequency of spontaneous Ca2+ transients 32
3.3 The wave size and the spatial propagation of wave-associated Ca2+ transients are not changed by Syt III or Syt III-C2AB* from SACs 34
3.4 The Brn3b promoter can be used for expressing Syt III by exo vivo transfection 35
3.5 Relative expression levels of Syt III in SACs after exo vivo transfection 36
3.6 Syt III, but not Syt III-C2AB*, in RGCs increases the Ca2+ transient frequency 37
3.7 The duration and amplitude of wave-associated Ca2+ transients are not changed by overexpressing Syt III or Syt III-C2AB* in RGCs 37
3.8 The spatial propagation of spontaneous Ca2+ transients is regulated by Ca2+ binding to the C2AB domain of Syt III in RGCs 38
3.9 The Syt III-mediated increase in wave frequency was abolished by the iGluR antagonists 39
3.10 In vivo electroporation for the study of retinogeniculate projection 41
3.11 Syt III introduced by in vivo electroporation alters retinogeniculate projection. 42
Chapter IV 44
Discussion 44
4.1 Ca2+ binding to the Syt III-C2AB domains in SACs regulates the temporal properties of retinal waves 45
4.2 Syt III in RGCs regulates the spatiotemporal properties of stage II retinal waves via Ca2+ binding to the C2AB domains. 46
4.3 Significance of Syt III-C2AB domains in regulating retinal waves 48
4.4 Glutamate release from RGCs during stage II retinal waves 49
4.5 Syt III in RGC alters eye-specific segregation in dLGN. 50
4.6 The different roles of Syt I and Syt III in developing retinas 52
Chapter V 54
Conclusion 54
References 55
List of Figures
Figure 1. Neuronal networks in the mature retina. 61
Figure 2. The visual transduction of the light signal. 62
Figure 3. The spatial properties and the generate mechanism of retinal waves. 63
Figure 4. Eye-specific segregation of retinogeniculate projections. 65
Figure 5. SNARE complex and Ca2+ binding sites of Synaptotagmin III. 67
Figure 6. Syt III expression level during stage II retinal waves. 69
Figure 7. The flowchart for the study of retinogeniculate projection following ectopic gene expression. 70
Figure 8. Syt III or Syt III-C2AB* is overexpressed in SACs by exo vivo retinal transfection. 72
Figure 9. Sample traces of spontaneous Ca2+ transients associated with retinal waves following exo vivo retinal transfection. 74
Figure 10. Weakened Ca2+ binding to the C2AB domains of Syt III in SACs increases the interval but decreases the frequency of spontaneous Ca2+ transients. 75
Figure 11. Syt III or Syt III-C2AB* in SACs does not change the duration or amplitude of spontaneous Ca2+ transients. 77
Figure 12. The spatial propagation of spontaneous Ca2+ transients was not changed by Syt III or Syt III-C2AB* in SACs. 79
Figure 13. The pBrn3b-driven HA-Syt III and HA-Syt III C2AB* HA-Syt III were expressed in Brn3b-positive cells. 80
Figure 14. Syt III and Syt III-C2AB* was overexpressed in RGCs by exo vivo retinal transfecion. 82
Figure 15. Sample traces of spontaneous Ca2+ transients associated with retinal waves following exo vivo retinal transfection. 84
Figure 16. Syt III in RGCs decreases the interval but increases the frequency of spontaneous Ca2+ transients. 85
Figure 17. Syt III or Syt III-C2AB* in RGCs does not alter the duration or amplitude of spontaneous Ca2+ transients. 87
Figure 18. The spatial propagation of spontaneous Ca2+ transients is decreased by Syt III in RGCs. 89
Figure 19. The Ca2+ transient frequency was decreased during bath-applied with iGluR antagonists. 90
Figure 20. Syt III-mediated increase in wave frequency was abolished by the iGluR antagonists. 92
Figure 21. The spatial propagation of spontaneous Ca2+ transients is altered by Syt III or Syt III-C2AB* in RGCs. 94
Figure 22. HA-Syt III was expressed in the transfected retina by in vivo electroporation. 95
Figure 23. The immunoreactivity of HA-Syt III was detected in the optic nerve from the transfected eye. 96
Figure 24. Ectopic Syt III was expressed by in vivo electroporation. 97
Figure 25. Syt III strongly dampens on ipsilateral projection. 98
Figure 26. Syt III down-regulates the eye-specific segregation of retinogeniculate projection to ipsilateral dLGN. 100
Figure 27. Ca2+ binding to Syt III in RGCs modulates the wave dynamics and eye-specific segregation of retinogeniculate projection. 102
List of Tables.
Table 1. The list of primers used in this study. 103
Table 2. The list of primary antibodies, secondary antibodies and CTB in this study. 104
Table 3. Comparison of wave characteristics following transfection in SACs. 105
Table 4. Comparison of wave characteristics following transfection in RGCs. 105
Table 5. The value of wave characteristics following transfection and pharmacology. 106
Table 6. The value of correlation index of Ctrl, Syt III, and Syt III-C2AB* in SACs. 107
Table 7. The value of correlation index of Ctrl, Syt III, and Syt III-C2AB* in RGCs. 108
Table 8. The value of correlation index, before antagonists applied, of Ctrl, Syt III, and Syt III-C2AB* in RGCs. 109
Table 9. The different roles of Syt I and Syt III in developing retinas 110
dc.language.isoen
dc.subject雙眼隔離現zh_TW
dc.subject突觸連結蛋白三zh_TW
dc.subject第二期視網膜波zh_TW
dc.subject麩胺酸釋放zh_TW
dc.subject鈣離子即時影像技術zh_TW
dc.subject活體電穿孔技術zh_TW
dc.subject突觸連結蛋白三zh_TW
dc.subject第二期視網膜波zh_TW
dc.subject麩胺酸釋放zh_TW
dc.subject雙眼隔離現zh_TW
dc.subject鈣離子即時影像技術zh_TW
dc.subject活體電穿孔技術zh_TW
dc.subjectCalcium imagingen
dc.subjectCalcium imagingen
dc.subjectIn vivo electroporationen
dc.subjectStage II retinal wavesen
dc.subjectGlutamate releaseen
dc.subjectEye-specific segregationen
dc.subjectIn vivo electroporationen
dc.subjectSynaptotagmin IIIen
dc.subjectSynaptotagmin IIIen
dc.subjectStage II retinal wavesen
dc.subjectGlutamate releaseen
dc.subjectEye-specific segregationen
dc.title第三型突觸連結蛋白的鈣離子結合能力調控模式化自發性放電現象和視覺網路發育zh_TW
dc.titleCalcium binding to Synaptotagmin III regulates patterned spontaneous activity and visual circuit developmenten
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐立中,盧主欽,焦傳金
dc.subject.keyword突觸連結蛋白三,第二期視網膜波,麩胺酸釋放,雙眼隔離現,鈣離子即時影像技術,活體電穿孔技術,zh_TW
dc.subject.keywordSynaptotagmin III,Stage II retinal waves,Glutamate release,Eye-specific segregation,Calcium imaging,In vivo electroporation,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201601240
dc.rights.note有償授權
dc.date.accepted2016-07-25
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
5.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved