Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50576
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor龔源成(Yuancheng Gung)
dc.contributor.authorYu-Ying Suen
dc.contributor.author蘇祐鼎zh_TW
dc.date.accessioned2021-06-15T12:46:59Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citationAdimah, N. I., Padhy, S. (2020). Ambient noise Rayleigh wave tomography across the Madagascar island. Geophysical Journal International, 220(3), 1657-1676.
Andriampenomanana, F., Nyblade, A. A., Wysession, M. E., Durrheim, R. J., Tilmann, F., Julià, J., ... Rakotondraibe, T. (2017). The structure of the crust and uppermost mantle beneath Madagascar. Geophysical Journal International, 210(3), 1525-1544.
Audoine, E., Savage, M. K., Gledhill, K. (2004). Anisotropic structure under a back arc spreading region, the Taupo Volcanic Zone, New Zealand. Journal of Geophysical Research: Solid Earth, 109(B11).
Bastow, I. D., Pilidou, S., Kendall, J. M., Stuart, G. W. (2010). Melt-induced seismic anisotropy and magma assisted rifting in Ethiopia: Evidence from surface waves. Geochemistry, Geophysics, Geosystems, 11(6).
Barruol, G., Fontaine, F. R. (2013). Mantle flow beneath La Réunion hotspot track from SKS splitting. Earth and Planetary Science Letters, 362, 108-121.
Barruol, G., Sigloch, K., RHUM-RUM Group, RESIF. (2017). RHUM-RUM experiment, 2011-2015, code YV (Réunion Hotspot and Upper Mantle – Réunion's Unterer Mantel) funded by ANR, DFG, CNRS-INSU, IPEV, TAAF, instrumented by DEPAS, INSU-OBS, AWI and the Universities of Muenster, Bonn, La Réunion.
Bell, S. W., Forsyth, D. W., Ruan, Y. (2015). Removing noise from the vertical component records of ocean‐bottom seismometers: Results from year one of the Cascadia Initiative. Bulletin of the Seismological Society of America, 105(1), 300-313.
Bendat, J. S., Piersol, A. G. (2011). Random data: analysis and measurement procedures (Vol. 729). John Wiley Sons.
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., ... Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239-1260.
Besairie, H. (1972). Géologie de Madagascar. I. Les terrains sédimentaires.
Brocher, T. M., Christensen, N. I. (1990). Seismic anisotropy due to preferred mineral orientation observed in shallow crustal rocks in southern Alaska. Geology, 18(8), 737-740.
Chiao, L. Y., Kuo, B. Y. (2001). Multiscale seismic tomography. Geophysical Journal International, 145(2), 517-527. westernmost Ryukyu slab. Tectonophysics, 333(1-2), 123-134.
Chiao, L. Y., Liang, W. T. (2003). Multiresolution parameterization for geophysical inverse problemsMultiresolution Parameterization. Geophysics, 68(1), 199-209.
Crampin, S. (1994). The fracture criticality of crustal rocks. Geophysical Journal International, 118(2), 428-438.
Crampin, S., Zatsepin, S. V. (1997). Changes of strain before earthquakes: the possibility of routine monitoring of both long-term and short-term precursors. Journal of Physics of the Earth, 45(1), 41-66.
Crawford, W. C., Webb, S. C., Hildebrand, J. A. (1998). Estimating shear velocities in the oceanic crust from compliance measurements by two‐dimensional finite difference modeling. Journal of Geophysical Research: Solid Earth, 103(B5), 9895-9916.
Crawford, W. C., Webb, S. C. (2000). Identifying and removing tilt noise from low-frequency (< 0.1 Hz) seafloor vertical seismic data. Bulletin of the Seismological Society of America, 90(4), 952-963.
Crawford, W. C., Stephen, R. A., Bolmer, S. T. (2006). A second look at low-frequency marine vertical seismometer data quality at the OSN-1 site off Hawaii for seafloor, buried, and borehole emplacements. Bulletin of the Seismological Society of America, 96(5), 1952-1960.
Dahlen, F., Tromp, J. (1998). Theoretical global seismology. Princeton university press.
Das, R., Rai, S. S. (2019). Redefining Dharwar Craton-Southern granulite terrain boundary in south India from new seismological constraints. Precambrian Research, 332, 105394.
Delvaux, D., Barth, A. (2010). African stress pattern from formal inversion of focal mechanism data. Tectonophysics, 482(1-4), 105-128.
Dreiling, J., Tilmann, F., Yuan, X., Giese, J., Rindraharisaona, E. J., Rümpker, G., Wysession, M. E. (2018). Crustal radial anisotropy and linkage to geodynamic processes: A study based on seismic ambient noise in southern Madagascar. Journal of Geophysical Research: Solid Earth, 123(6), 5130-5146.
Fontaine, F. R., Barruol, G., Tkalčić, H., Wölbern, I., Rümpker, G., Bodin, T., Haugmard, M. (2015). Crustal and uppermost mantle structure variation beneath La Réunion hotspot track. Geophysical Journal International, 203(1), 107-126.
Fourno, J. P., Roussel, J. (1994). Imaging of the Moho depth in Madagascar through the inversion of gravity data: geodynamic implications. Terra Nova, 6(5), 512-519.
Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., ... Macey, P. (2013). Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences, 86, 65-106.
Giese, J., Seward, D., Schreurs, G. (2012). Low‐temperature evolution of the Morondava rift basin shoulder in western Madagascar: An apatite fission track study. Tectonics, 31(2).
Godfrey, N. J., Christensen, N. I., Okaya, D. A. (2000). Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. Journal of Geophysical Research: Solid Earth, 105(B12), 27991-28007.
Godin, O. A. (1997). Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid. Wave motion, 25(2), 143-167.
Godin, O. A. (2006). Recovering the acoustic Green’s function from ambient noise cross correlation in an inhomogeneous moving medium. Physical Review Letters, 97(5), 054301.
Godin, O. A. (2007). Emergence of the acoustic Green’s function from thermal noise. The Journal of the Acoustical Society of America, 121(2), EL96-EL102.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Huang, T. Y., Gung, Y., Kuo, B. Y., Chiao, L. Y., Chen, Y. N. (2015). Layered deformation in the Taiwan orogen. Science, 349(6249), 720-723.
Johnston, J. E., Christensen, N. I. (1995). Seismic anisotropy of shales. Journal of Geophysical Research: Solid Earth, 100(B4), 5991-6003.
Mardia, K. V., Jupp, P. E. (2000). Directional statistics, (p. 429). Hoboken, N. J: John Wiley.
Mazzullo, A., Stutzmann, E., Montagner, J. P., Kiselev, S., Maurya, S., Barruol, G., Sigloch, K. (2017). Anisotropic tomography around La Réunion island from Rayleigh waves. Journal of Geophysical Research: Solid Earth, 122(11), 9132-9148.
Meissner, R., Rabbel, W., Kern, H. (2006). Seismic lamination and anisotropy of the lower continental crust. Tectonophysics, 416(1-4), 81-99.
Michael Wysession, D. W. (2011). INVESTIGATION OF SOURCES OF INTRAPLATE VOLCANISM USING PASSCAL BROADBAND INSTRUMENTS IN MADAGASCAR, THE COMORES, AND MOZAMBIQUE. International Federation of Digital Seismograph Networks.
Montagner, J. P., Nataf, H. C. (1986). A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research: Solid Earth, 91(B1), 511-520.
Norton, I. O., Sclater, J. G. (1979). A model for the evolution of the Indian Ocean and the breakup of Gondwanaland. Journal of Geophysical Research: Solid Earth, 84(B12), 6803-6830..
Pratt, M. J., Wysession, M. E., Aleqabi, G., Wiens, D. A., Nyblade, A. A., Shore, P., ... Barruol, G. (2017). Shear velocity structure of the crust and upper mantle of Madagascar derived from surface wave tomography. Earth and Planetary Science Letters, 458, 405-417.
Phethean, J. J., Kalnins, L. M., van Hunen, J., Biffi, P. G., Davies, R. J., McCaffrey, K. J. (2016). Madagascar's escape from A frica: A high‐resolution plate reconstruction for the W estern S omali B asin and implications for supercontinent dispersal. Geochemistry, Geophysics, Geosystems, 17(12), 5036-5055.
Piqué, A., Laville, E., Chotin, P., Chorowicz, J., Rakotondraompiana, S., Thouin, C. (1999). L'extension à Madagascar du Néogène à l'Actuel: arguments structuraux et géophysiques. Journal of African Earth Sciences, 28(4), 975-983.
Rabinowitz, P. D., Coffin, M. F., Falvey, D. (1983). The separation of Madagascar and Africa. Science, 220(4592), 67-69.
Ramirez, C., Nyblade, A., Wysession, M. E., Pratt, M., Andriampenomanana, F., Rakotondraibe, T. (2018). Complex seismic anisotropy in Madagascar revealed by shear wave splitting measurements. Geophysical Journal International, 215(3), 1718-1727.
Ratsimbazafy, J.B., et Rakoto, H.: Mesures d'aimantation et de datation de quelques échantillons de roches dans la région volcanique de l'Itasy. Journées Scientifiques du Projet Campus « Le Rifting Malgache », Académie Nationale des Arts, Lettres et des Sciences, 24-25 juin 1996, Antananarivo, (1996).
Rawlinson, N., Sambridge, M. (2005). The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Exploration Geophysics, 36(4), 341-350.
Reiss, M. C., Rümpker, G., Tilmann, F., Yuan, X., Giese, J., Rindraharisaona, E. J. (2016). Seismic anisotropy of the lithosphere and asthenosphere beneath southern Madagascar from teleseismic shear wave splitting analysis and waveform modeling. Journal of Geophysical Research: Solid Earth, 121(9), 6627-6643.
Rindraharisaona, E. J., Guidarelli, M., Aoudia, A., Rambolamanana, G. (2013). Earth structure and instrumental seismicity of Madagascar: Implications on the seismotectonics. Tectonophysics, 594, 165-181.
Rindraharisaona, E. J., Tilmann, F., Yuan, X., Rümpker, G., Giese, J., Rambolamanana, G., Barruol, G. (2017). Crustal structure of southern Madagascar from receiver functions and ambient noise correlation: Implications for crustal evolution. Journal of Geophysical Research: Solid Earth, 122(2), 1179-1197.
Saria, E., Calais, E., Stamps, D. S., Delvaux, D., Hartnady, C. J. H. (2014). Present‐day kinematics of the East African Rift. Journal of Geophysical Research: Solid Earth, 119(4), 3584-3600.
Schaeffer, A. J., Lebedev, S., Becker, T. W. (2016). Azimuthal seismic anisotropy in the Earth's upper mantle and the thickness of tectonic plates. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(2), 901-933.
Seats, K. J., Lawrence, J. F., Prieto, G. A. (2012). Improved ambient noise correlation functions using Welch′ s method. Geophysical Journal International, 188(2), 513-523.
Shapiro, N. M., Campillo, M., Stehly, L., Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615-1618. Shapiro, N. M., Campillo, M., Stehly, L., Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615-1618.
Snieder, R., Wapenaar, K. (2010). Imaging with ambient noise. Physics Today, 63(9), 44-49.
Stehly, L., Campillo, M., Shapiro, N. M. (2006). A study of the seismic noise from its long‐range correlation properties. Journal of Geophysical Research: Solid Earth, 111(B10).
Storey, M., Mahoney, J. J., Saunders, A. D., Duncan, R. A., Kelley, S. P., Coffin, M. F. (1995). Timing of hot spot—related volcanism and the breakup of Madagascar and India. Science, 267(5199), 852-855.
Tilmann, F., Yuan, X., Rümpker, G., Rindraharisaona, E. (2012). SELASOMA Project, Madagascar 2012-2014.
Tucker, R. D., Roig, J. Y., Moine, B., Delor, C., Peters, S. G. (2014). A geological synthesis of the Precambrian shield in Madagascar. Journal of African Earth Sciences, 94, 9-30.
Tucker R.D., Peters S.G., Roig J.Y., Théveniaut H., Delor C., 2012. Notice explicative des cartes géologique et métallogéniques de la République de Madagascar à 1/1000000, Ministère des Mines, PGRM, Antananarivo, République de Madagascar.
Upton, B. G. J., Wadsworth, W. J. (1965). Geology of Réunion Island, Indian Ocean. Nature, 207(4993), 151-154.
Weaver, R., Lobkis, O. (2002). On the emergence of the Green's function in the correlations of a diffuse field: pulse-echo using thermal phonons. Ultrasonics, 40(1-8), 435-439.
Weaver, R. L. (2005). Information from seismic noise. Science, 307(5715), 1568-1569.
Weaver, R. L., Lobkis, O. I. (2001). Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies. Physical Review Letters, 87(13), 134301.
Windley, B.F., Razafiniparany, A., Razakamanana, T. et al. Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: a review and reappraisal. Geol Rundsch 83, 642–659 (1994).
Wit, M. J. D. (2003). Madagascar: heads it's a continent, tails it's an island. Annual Review of Earth and Planetary Sciences, 31(1), 213-248.
You, S. H., Gung, Y., Chiao, L. Y., Chen, Y. N., Lin, C. H., Liang, W. T., Chen, Y. L. (2010). Multiscale ambient noise tomography of short-period Rayleigh waves across northern Taiwan. Bulletin of the Seismological Society of America, 100(6), 3165-3173.
簡志傑(2017)。利用周遭噪訊層析成像探討臺灣淺部地殼構造。國立臺灣大學
地質科學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/h83dze
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50576-
dc.description.abstract馬達加斯加島位處東非外海的西印度洋上。其地質架構複雜,主體可劃分為東西兩側,東側為由岡瓦納古陸所分離的陸塊,約占據全島面積2/3,西側則為自侏儸紀起所堆積的摩倫達瓦盆地(Morondava basin) 及馬哈贊加盆地 ( Majunga basin),馬島與鄰近海域區域則為白堊紀時馬島脫離於東非、印度所增生的海洋地殼。藉由馬島近年來漸趨完善的測站網,地震學家開始對該區的速度構造有了初步的探究。
  本研究透過周遭噪訊層析成像進行研究,範圍概括2012-2013年馬島與鄰近海域,分別為陸上MACOMO,SELASOMA,GEOSCOPE三個測站網,與西印度洋海底地震儀測站網RUM-RHUM。並藉由測站所記錄的連續噪訊量測出測站對之間5-35秒雷利波的相速度,接著以多重尺度小波逆推此區域的地殼三維剪力波速 (Vs) 及其方位非均向性。
  反演結果顯示,Vs於淺部地殼( < 10km )具有明顯的側向差異,低速區分佈在馬島西側,速度介於2.5-3.0 km/s,並集中在西南方的摩倫達瓦盆地及西北方的馬哈贊加盆地,高速區則分佈在島嶼中央以東,由泛非造山運動所縫合的克拉通所構成,速度介於3.2-3.6 km/s;馬島區域的地殼非均向性可則分成海陸兩種型態 (1) 馬島陸地的非均向性主要受控於造山時期的擠壓方向且快軸方向平行於島上岩層葉理方向,其反映構造相關的橫向均向性; (2) 馬島周圍海洋地殼的非均向性快軸方向約略平行馬島分離時期的洋殼擴張方向,可能是洋殼生成早期所記錄古老流場導致礦物的排列方向。
zh_TW
dc.description.abstractWe apply ambient noise tomography to Madagascar. The Madagascar Island can be generally divided into two major geological units. The eastern two-thirds of the island is composed of metamorphic basement separated from the east Gondwana, and the western part of the island is mostly covered by sedimentary basins, Morondava basin and Majunga basin. Little was known about the subsurface crustal structure of Madagascar until the recent deployment of seismic networks in and around this area.
  In this study, we constrain the crustal seismic structure of Madagascar by using the dispersion data of Rayleigh wave extracted from ambient seismic noise. We derive the noise cross-correlation functions (CCF) from the vertical continuous data (2012-2013) recorded by 3 land seismic networks and one OBS network. To ensure the data quality, only the CCFs with inter-station distance less than 700 km are considered for the dispersion measurement. Using the resulting broad-band (5-35 seconds) dispersion data, we implement a wavelet-based multi-scale inversion technique to build 3-D Vs and Vs azimuthal anisotropy model of the crust of Madagascar.
  In the resulting isotropic Vs model, the lower velocity zones are mainly distributed in the shallow depth ( < 10km ) of Morondava basin and Majunga basin; on the other hand, the metamorphic basement in east Madagascar is mostly covered by higher velocity. The resulting Vs anisotropy model shows that the shallow crust of Madagascar is dominated by structure-related anisotropy, with the fast polarization direction generally parallel to the foliation direction of the metamorphic basement formed during the Pan-African orogeny.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:46:59Z (GMT). No. of bitstreams: 1
U0001-1108202010343100.pdf: 7619104 bytes, checksum: 095b26f971e9caec0699c3598e3f3a9e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents論文審定書 …………………………………………………………………… I
誌謝 ………………………………………………………………………………… II
中文摘要 ………………………………………………………………………… III
Abstract ……………………………………………………………………… IV
第一章、 緒論 …………………………………………………………… 1
1.1 前言………………………………………………………………………… 1
1.2 周遭噪訊層析成像 ………………………………………… 1
1.3 震波非均向性……………………………………………………… 1
1.4 研究動機………………………………………………………………… 2
第二章、 地體架構……………………………………………………… 11
第三章、 資料簡介……………………………………………………… 16
第四章、 理論背景與方法流程……………………………… 19
4.1.理論背景………………………………………………………………… 19
4.2.資料處理………………………………………………………………… 21
4.2.1.資料前處理…………………………………………………… 21
4.2.2. CCF計算與疊加………………………………………… 23
4.2.3.表面波頻散分析–相速度量測……………… 24
4.3多重尺度小波逆推 …………………………………………… 25
4.4.1.多重尺度小波逆推 ………………………………… 25
4.4.2. 波線追跡 ………………………………………………… 26
4.4.3. 方位非均向性 ……………………………………… 28
4.4 三維剪力波速度模型 ………………………………… 28
4.4.1. 三維速度模型的建立 ……………………… 28
4.4.2 . 模型測試與比較 ……………………………… 29
第五章、 結果與討論 ………………………………………… 48
5.1 剪力波速度構造 ………………………………………… 48
5.2 方位非均向性 ……………………………………………… 49
第六章、 結論 ………………………………………………………… 54
第七章、 參考資料 ……………………………………………… 56
附錄、觀測網資訊 ………………………………………………… 62
MACOMO ……………………………………………………………………… 62
SELASOMA ………………………………………………………………… 63
GEOSCOPE ………………………………………………………………… 64
RHUM-RUM ………………………………………………………………… 65
dc.language.isozh-TW
dc.subject剪力波方位非均向性zh_TW
dc.subject馬達加斯加地殼速度構造zh_TW
dc.subject周遭噪訊層析成像zh_TW
dc.subject剪力波方位非均向性zh_TW
dc.subject周遭噪訊層析成像zh_TW
dc.subject馬達加斯加地殼速度構造zh_TW
dc.subjectAmbient noise tomographyen
dc.subjectMadagascaren
dc.subjectVs azimuthal anisotropyen
dc.subjectAmbient noise tomographyen
dc.subjectMadagascaren
dc.subjectVs azimuthal anisotropyen
dc.title利用噪聲成像解析馬達加斯區域的速度構造zh_TW
dc.titleAmbient Noise Tomography of Madagascaren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee喬凌雲(Ling-Yun Chiao),曾泰琳 (Tai-Lin Tseng),陳映年(Ying-Nien Chen)
dc.subject.keyword馬達加斯加地殼速度構造,周遭噪訊層析成像,剪力波方位非均向性,zh_TW
dc.subject.keywordMadagascar,Vs azimuthal anisotropy,Ambient noise tomography,en
dc.relation.page65
dc.identifier.doi10.6342/NTU202002903
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
Appears in Collections:地質科學系

Files in This Item:
File SizeFormat 
U0001-1108202010343100.pdf
  Restricted Access
7.44 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved