請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50570完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林致廷 | |
| dc.contributor.author | Yu-Han Sun | en |
| dc.contributor.author | 孫于涵 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:46:41Z | - |
| dc.date.available | 2019-08-24 | |
| dc.date.copyright | 2016-08-24 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-23 | |
| dc.identifier.citation | [1] E. Engvall, and P. Perlmann. (1971). Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 8(9), 871-874
[2] J. Homola. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical reviews, 108(2), 462-493. [3] P. Bergveld. (1970). Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Transactions on Biomedical Engineering, 1(BME-17), 70-71. [4] J. Wang. (2006). Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosensors and Bioelectronics, 21(10), 1887-1892. [5] 台灣衛生福利部 (2014)。103年死因統計結果分析。2016年7月取自網址http://www.mohw.gov.tw/news/531349778 [6] 劉豫寧(2008)。B型肝炎的醫學大躍進-將分子生物學方法應用於臨床診斷。生物醫學期刊,1,218-235。 [7] World Health Organization (2002). Hepatitis B. Retrieved July, 2016, from http://www.who.int/csr/disease/hepatitis/whocdscsrlyo20022/en/ [8] E. B. Keeffe, D. T. Dieterich, et al. (2006). A treatment algorithm for the management of chronic hepatitis B virus infection in the United States: an update. Clinical Gastroenterology and Hepatology, 4(8), 936-962. [9] S. A. Lok, and B. J. McMahon. (2007). Chronic hepatitis B. Hepatology, 45(2), 507-539. [10] Y. F. Liaw, N. Leung, et al. (2008). Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2008 update. Hepatology international,2(3), 263-283. [11] H. C. Lau, T. E. Bae, et al. (2013). Biomimetic Trehalose Biosensor Using Gustatory Receptor (Gr5a) Expressed in Drosophila Cells and Ion-Sensitive Field-Effect Transistor. Japanese Journal of Applied Physics, 52(4S), 04CL02. [12] N. Rodríguez, B. Guzman, et al. (1994). Diagnosis of cutaneous leishmaniasis and species discrimination of parasites by PCR and hybridization. Journal of Clinical Microbiology, 32(9), 2246-2252. [13] J. Wang. (2001). Glucose biosensors: 40 years of advances and challenges.Electroanalysis, 13(12), 983. [14] S. J. Updike, and G. P. Hicks. (1967). The enzyme electrode. Nature, 214, 986-988. [15] I. Palchetti, and M. Mascini. (2010). Biosensor technology: a brief history. InSensors and Microsystems (pp. 15-23). Springer Netherlands. [16] G. Wu, R. H. Datar, et al. (2001). Bioassay of prostate-specific antigen (PSA) using microcantilevers.Nature biotechnology, 19(9), 856-860. [17] D. R. Shankaran, K. V. Gobi, et al. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158-177. [18] M. Meyyappan, and J. S. Lee. (2014). Nanowire BioFETs: An Overview. InNanowire Field Effect Transistors: Principles and Applications (pp. 225-240). Springer New York. [19] Nucleic acid structure. Retrieved July, 2016, from https://en.wikipedia.org/wiki/Nucleic_acid_structure [20] J. Kimura, and T. Kuriyama. (1990). FET biosensors. Journal of biotechnology,15(3), 239-254. [21] P. Bergveld. (2003). Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators B: Chemical, 88(1), 1-20. [22] P. Bergveld. (2003). ISFET, theory and practice. In IEEE Sensor Conference, Toronto (pp. 1-26). [23] C. Toumazou, L. M. Shepherd, et al. (2013). Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nature methods, 10(7), 641-646. [24] S. Purushothaman, C. Toumazou, et al. (2006). Protons and single nucleotide polymorphism detection: A simple use for the Ion Sensitive Field Effect Transistor. Sensors and Actuators B: Chemical, 114(2), 964-968. [25] F. Zhang, J. Wu, et al. (2014). Portable pH-inspired electrochemical detection of DNA amplification. Chemical Communications,50(61), 8416-8419. [26] A. Poghossian, and M. J. Schöning. (2014). Label_Free Sensing of Biomolecules with Field_Effect Devices for Clinical Applications. Electroanalysis, 26(6), 1197-1213. [27] E. Stern, R. Wagner, et al. (2007). Importance of the Debye screening length on nanowire field effect transistor sensors. Nano letters, 7(11), 3405-3409. [28] W. Huang, A. K. Diallo, et al. (2015). Electrochemical processes and mechanistic aspects of field-effect sensors for biomolecules. Journal of Materials Chemistry C, 3(25), 6445-6470. [29] P. D. Batista, and M. Mulato. (2005). ZnO extended-gate field-effect transistors as pH sensors. Applied Physics Letters, 87(14), 143508-143900. [30] C. Duarte-Guevara, F. L. Lai, et al. (2014). Enhanced biosensing resolution with foundry fabricated individually addressable dual-gated ISFETs. Analytical chemistry, 86(16), 8359-8367. [31] I. K. Lee, M. Jeun, et al. (2015). A self-amplified transistor immunosensor under dual gate operation: highly sensitive detection of hepatitis B surface antigen. Nanoscale, 7(40), 16789-16797. [32] Y. J. Huang, C. C. Lin, et al. (2015). High performance dual-gate ISFET with non-ideal effect reduction schemes in a SOI-CMOS bioelectrical SoC. In 2015 IEEE International Electron Devices Meeting (IEDM) (pp. 29-2). IEEE. [33] ThermoFisher. Sulfo-SMCC (sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate). Retrieved July, 2016, from https://www.thermofisher.com/order/catalog/product/22322 [34] Y. J. Huang, C. W. Huang, et al. (2013). A CMOS cantilever-based label-free DNA SoC with improved sensitivity for hepatitis B virus detection. IEEE transactions on biomedical circuits and systems, 7(6), 820-831. [35] J. Bornholt, R. Lopez, et al. (2016). A DNA-based archival storage system. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems (pp. 637-649). ACM. [36] J. B. Huh, J. Y. Lee, et al. (2013). Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation. The journal of advanced prosthodontics, 5(2), 84-91. [37] A. A. Rastorguev, V. I. Belyi, et al. (2007). Luminescence of intrinsic and extrinsic defects in hafnium oxide films. Physical Review B, 76(23), 235315. [38] C. W. Huang, Y. J. Huang, et al. (2012). A fully integrated hepatitis B virus DNA detection SoC based on monolithic polysilicon nanowire CMOS process. In 2012 Symposium on VLSI Circuits (VLSIC) (pp. 124-125). IEEE. [39] L. A. Chrisey, G. U. Lee, et al. (1996). Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic acids research,24(15), 3031-3039. [40] X. Wei, C. Kang, et al. (2009). Porous silicon waveguide with integrated grating coupler for DNA sensing. InBiOS International Society for Optics and Photonics, 71670C-71670C. [41] Y. Zhao, J. L. Lawrie, et al. (2014). Understanding and mitigating DNA induced corrosion in porous silicon based biosensors. In SPIE BiOS (pp. 893302-893302). International Society for Optics and Photonics. [42] Y. Zheng, T. Thai, et al. (2013). DNA_Directed Self_Assembly of Core_Satellite Plasmonic Nanostructures: A Highly Sensitive and Reproducible Near_IR SERS Sensor. Advanced Functional Materials, 23(12), 1519-1526. [43] F. Le Floch, H. A. Ho, et al. (2005). Ferrocene_Functionalized Cationic Polythiophene for the Label_Free Electrochemical Detection of DNA. Advanced Materials, 17(10), 1251-1254. [44] M. Annaka, C. Yahiro, et al. (2007). Real-time observation of coil-to-globule transition in thermosensitive poly (N-isopropylacrylamide) brushes by quartz crystal microbalance. Polymer, 48(19), 5713-5720. [45] L. C. Yen, M. T. Tang, et al. (2014). Effect of Sensing Film Thickness on Sensing Characteristics of Dual-Gate Poly-Si Ion-Sensitive Field-Effect-Transistors. IEEE Electron Device Letters, 35(12), 1302-1304. [46] H. J. Jang, and W. J. Cho. (2014). Performance enhancement of capacitive-coupling dual-gate ion-sensitive field-effect transistor in ultra-thin-body. Scientific reports, 4. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50570 | - |
| dc.description.abstract | 生物分子感測分析為現今臨床診斷步驟中重要的一環,即對人體中特定的生 物分子含量進行偵測,作為生物標記。許多 DNA 片段為各種遺傳性疾病、傳染 性疾病及癌症之生物標記,而隨著個人化醫療及重點照護檢驗系統之演進,高靈 敏度與流程簡化成為生物分子感測分析技術著重發展之目標。利用以 CMOS 為 基底之離子敏感場效電晶體,整合傳統上需經數量放大後再取之量測的兩段式 DNA 偵測技術,應能滿足簡化與高靈敏之目標,未來搭配其他微機電相關技術, 可望發展成可攜式之實驗室晶片。
本論文以台積電 0.18 微米 SOI-CMOS 標準製程製作之離子敏感場效電晶體 作為生物感測器,進行其穩定度與偵測 DNA 放大之測試,並研究其對特定 DNA 的感測效能。由實驗結果得知,該感測器在各式環境條件下皆具有高穩定 度,且能成功以電性偵測 DNA 放大的表現。而在量測方面,先執行固定化之優 化,以較佳流程進行感測器表面的固定化,再用來感測 B 型肝炎病毒 DNA。根 據研究結果,我們得知陣列感測器以取得整體平均表現的方式,相較於單一感測 器大幅降低固定化後表面不均所造成的電性差異,將能有效偵測特定 DNA 之含 量及區分不同種類之 DNA。 | zh_TW |
| dc.description.abstract | Biomolecular sensing and analysis play a pivotal role in modern clinical diagnosis. That is to detect the quantity of specific biomolecules, as biomarkers, in human body. Many DNA sequences are the biomarkers of various hereditary diseases, infectious diseases, and cancer. With the progress of personal health care and point-of- care testing system, high sensitivity and simplified procedure have become the focused development goals. Take the advantage of CMOS-based ion-sensitive field-effect transistor (ISFET), the goals shall be satisfied by integrating the conventional two- stage DNA detection technique, which requires amplification before sensing. Combining with other MEMS technology, it is expected to become a portable lab-on-a- chip in the near future.
In this thesis, we apply ISFETs, fabricated by standard TSMC 0.18μm silicon- on-insulator (SOI) CMOS process, to the DNA diagnosis technologies. To test the ISFET, both stability and quantity analysis for DNA amplification are examined. The sensitivity and selectivity to specific DNA are measured as well. According to the experiment results, ISFET performs well under various conditions with high stability. It is capable of detecting the states after DNA amplifications by the electrical property. On the other hand, we improve the immobilization procedure at first hand and detect the sequence of hepatitis B virus DNA afterwards. As a result, array sensor, relative to single sensor, lowers the electrical sensing difference caused by inhomogeneous surface after immobilization.It will effectively detect the quantity of specific DNA and distinguish different kinds of DNA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:46:41Z (GMT). No. of bitstreams: 1 ntu-105-R03945011-1.pdf: 4235035 bytes, checksum: ca8bf61099ce1be138740e597ba567fa (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 序論 1 第一節 序言 1 第二節 研究動機 2 第三節 論文架構 5 第二章 文獻回顧與原理介紹 6 第一節 生物感測技術的演進 6 第二節 場效電晶體原理 8 第三節 離子敏感場效電晶體感測器 9 第四節 離子敏感場效電晶體聚合酶鏈鎖反應程度偵測 10 第五節 離子敏感場效電晶體生物量測方式與感測影響參數 12 第三章 元件設計與實驗方法 18 第一節 生物感測晶片設計 18 第二節 生物材料介紹 19 第三節 實驗量測平台與架設 23 第四節 量測實驗步驟及方法 25 第四章 實驗結果與討論 29 第一節 環境條件與感測器靈敏度之關係 29 第二節 聚合酶鍊鎖反應循環數偵測 37 第三節 固定化步驟優化 39 第四節 B型肝炎病毒DNA電性量測 44 第五節 不匹配之DNA電性量測 48 第五章 結果與未來展望 49 第一節 結論 50 第二節 未來展望 50 參考文獻 51 附錄 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物分子感測 | zh_TW |
| dc.subject | 離子敏感場效電晶體 | zh_TW |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | 生物分子感測 | zh_TW |
| dc.subject | 離子敏感場效電晶體 | zh_TW |
| dc.subject | Biomolecular sensing | en |
| dc.subject | biomarkers | en |
| dc.subject | ISFET | en |
| dc.subject | Biomolecular sensing | en |
| dc.subject | biomarkers | en |
| dc.subject | ISFET | en |
| dc.title | 離子敏感場效電晶體陣列應用於DNA偵測 | zh_TW |
| dc.title | A CMOS-Based ISFET Array for DNA Detection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃念祖,陳奕帆,黃睿政 | |
| dc.subject.keyword | 生物分子感測,生物標記,離子敏感場效電晶體, | zh_TW |
| dc.subject.keyword | Biomolecular sensing,biomarkers,ISFET, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201601190 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
