Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50563
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorWei-Han Chenen
dc.contributor.author陳韋翰zh_TW
dc.date.accessioned2021-06-15T12:46:20Z-
dc.date.available2016-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-24
dc.identifier.citation[1] H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes,” J. Appl. Phys. 97, 091101 (2005).
[2] D. Y. Kim, J. H. Park, J. W. Lee, S. Hwang, S. J. Oh, J. Kim, C. Sone, E. F. Schubert, and J. K. Kim, “Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission,” Light: Sci. Appl. 4, e263 (2015).
[3] H. Hirayama, T. Yatabe, N. Noguchi, T. Ohashi, and N. Kamata, “231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire,” Appl. Phys Lett. 91, 071901 (2007).
[4] R. H. Ritchie, “Plasmon losses by fast electrons in thin films,” Phys. Rev. 106, 874 (1957).
[5] W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,” Appl. Phys. Lett. 92, 133115, (2008).
[6] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[7] J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173 (1991).
[8] E. Kretschmann, and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf. 23A, 2135, (1968).
[9] C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
[10] S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Optics Lett. 28, 1870, (2003).
[11] H. L. Offerhaus, B. van de Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5, 2144, (2005).
[12] S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B 52, 11441 (1995).
[13] W. L. Barnes, S. C. Kitson, T. W. preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654 (1997).
[14] C. Bonnand, J. Bellessa, C. Symond, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” App. Phys. Lett. 89, 231119 (2006).
[15] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, 391, 667, (1998).
[16] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779 (1998).
[17] H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).
[18] J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
[19] V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996).
[20] J. h. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005).
[21] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
[22] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908).
[23] V. M. Shalaev, R. Botet, J. Mercer, E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996).
[24] M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985).
[25] N. Gao, K. Huang, J. Li, S. Li, X. Yang and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Sci. Rep. 2, 816 (2012)
[26] E. M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 681 (1946).
[27] C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013).
[28] F. A. Jenkins and H. E. White, Fundamentals of Optics 3/e (McGraw-Hill, 1957)
[29] A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
[30] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
[31] D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
[32] G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
[33] Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914-A929 (2011).
[34] Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23, 30709-30720 (2015).
[35] C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842-A856 (2014).
[36] C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105, 101106 (2014).
[37] C. H. Lin, C. H. Chen, Y. F. Yao, C. Y. Su, P. Y. Shih, H. S. Chen, C. Hsieh, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Behaviors of surface plasmon coupled light-emitting diodes induced by surface Ag nanoparticles on dielectric interlayers,” Plasmonics 10, 1029-1040 (2015).
[38] C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010).
[39] C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150-8161 (2015).
[40] K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Unique optical properties of AlGaNAlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett. 84, 5264-5266 (2004).
[41] J. E. Northrup, C. L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N. M. Johnson, and T. Kolbe, “Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells,” Appl. Phys. Lett. 100, 021101 (2012).
[42] H. Lu, T. Yu, G. Yuan, X. Chen, Z. Chen, G. Chen, and G. Zhang, “Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells,” Opt. Lett. 37, 3693-3695 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50563-
dc.description.abstract我們使用金屬有機化學氣相沉積的方式,成長氮化鋁鎵深紫外光量子井,並在上面成長123奈米的氮化鋁鎵覆蓋層。然後,我們在覆蓋層製作一維鋁奈米光柵結構產生表面電漿子耦合效果,來提升氮化鋁鎵深量子井的內部量子效率。透過量測低溫到室溫的光激發螢光頻譜,並且透過偏振片收光做比較,得出垂直極化和水平極化的內部量子效率。因為重(輕)電洞能階和分裂價帶的能階差異很小,導致垂直極化和水平極化的內部量子效率無顯著差異。垂直極化和水平極化有相近的內部量子效率,也可能是因為表面電漿子共振同時和垂直極化和水平極化的躍遷耦合。當發光極化方向和鋁光柵溝槽方向互相垂直時,耦合的表面電漿子共振模態由局域表面電漿子共振主導。當發光極化方向和鋁光柵溝槽方向互相平行時,耦合係由表面電漿極化子和局域表面電漿子結合而成。在激發雷射極化方向和鋁光柵溝槽方向互相垂直時,局域表面電漿子與雷射作用,產生更強的雷射激發而造成更高的內部量子效率。我們也發現鋁光柵結構底部和量子井的距離越近,量子井之內部量子效率越大。zh_TW
dc.description.abstractThe enhancement of internal quantum efficiency (IQE) of deep-ultraviolet (UV) AlxGa1-xN/AlyGa1-yN (x < y) quantum wells (QWs) by fabricating one-dimensional Al nano-gratings on a QW structure for inducing surface plasmon (SP) coupling is demonstrated. Through temperature-dependent photoluminescence (PL) measurement, the enhancements of IQE in different emission polarizations are illustrated. Due to the small difference in energy band level between the heavy/light hole and split-off valence bands, the IQEs of the transverse-electric- (TE-) and transverse-magnetic- (TM-) polarized emissions are about the same. With SP coupling, the similar IQEs between different polarizations can also be attributed to the simultaneous SP couplings of the TE- and TM-polarized transitions. When emission polarization is perpendicular to Al-grating ridge, the SP resonance mode for coupling with the QWs is dominated by localized surface plasmon (LSP). When emission polarization is parallel with Al-grating ridge, the coupled-SP resonance mode mixes LSP and surface plasmon polariton. When the excitation laser polarization is perpendicular to Al-grating ridge, the strong LSP resonance at the excitation laser wavelength leads to stronger excitation and hence higher IQE levels. The IQE enhancement decreases with the distance between Al-grating ridge tip and the QWs.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:46:20Z (GMT). No. of bitstreams: 1
ntu-105-R02941108-1.pdf: 2682003 bytes, checksum: 28835758f5c2c3c5f4f46951013fbbd5 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figure vi
List of Table ix
Chapter 1 Introduction 1
1.1 AlGaN for Deep-Ultraviolet Light-Emitting Diodes 1
1.2 Surface Plasmons 1
1.3 Coupling Between an AlGaN QW and Surface Plasmons 6
1.4 Modified Lloyd’s Interferometry Setup 7
1.5 Research Motivations 8
1.6 Theses Organization 10
Chapter 2 Sample Growth Conditions, Process Procedures, and Designation 16
Chapter 3 Optical Measurements 23
Chapter 4 Photoluminescence Measurement Results 28
Chapter 5 Simulation Results 42
Chapter 6 Discussions 47
Chapter 7 Conclusions 49
References 50
dc.language.isoen
dc.subject表面電漿子zh_TW
dc.subject內部量子效率zh_TW
dc.subject內部量子效率zh_TW
dc.subject氮化鋁鎵量子井zh_TW
dc.subject鋁奈米光柵結構zh_TW
dc.subject表面電漿子zh_TW
dc.subject深紫外光zh_TW
dc.subject深紫外光zh_TW
dc.subject氮化鋁鎵量子井zh_TW
dc.subject鋁奈米光柵結構zh_TW
dc.subjectInternal Quantum Efficiencyen
dc.subjectSurface Plasmonen
dc.subjectAl Nano-grating Structureen
dc.subjectAlGaN Quantum Wellsen
dc.subjectDeep-ultravioleten
dc.subjectInternal Quantum Efficiencyen
dc.subjectSurface Plasmonen
dc.subjectAl Nano-grating Structureen
dc.subjectAlGaN Quantum Wellsen
dc.subjectDeep-ultravioleten
dc.title利用鋁奈米光柵結構產生表面電漿子耦合效果來提升氮化鋁鎵深紫外光量子井的內部量子效率zh_TW
dc.titleInternal Quantum Efficiency Enhancement of Deep-ultraviolet AlGaN Quantum Wells through Surface Plasmon Coupling with an Al Nano-grating Structureen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉(Yean-Woei Kiang),黃建璋(Jian-Jang Huang),吳育任(Yuh-Renn Wu),吳肇欣(Chao-Hsin Wu)
dc.subject.keyword表面電漿子,鋁奈米光柵結構,氮化鋁鎵量子井,深紫外光,內部量子效率,zh_TW
dc.subject.keywordSurface Plasmon,Al Nano-grating Structure,AlGaN Quantum Wells,Deep-ultraviolet,Internal Quantum Efficiency,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201601297
dc.rights.note有償授權
dc.date.accepted2016-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
2.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved