Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50557
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorYi-An Chenen
dc.contributor.author陳怡安zh_TW
dc.date.accessioned2021-06-15T12:46:03Z-
dc.date.available2016-07-26
dc.date.copyright2016-07-26
dc.date.issued2016
dc.date.submitted2016-07-25
dc.identifier.citationReferences
1. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106, 874 (1957)
2. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, 'Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,' Appl. Phys. Lett. 92, 133115, (2008).
3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature 424, 824 (2003).
4. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173 (1991).
5. E. Kretschmann, and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf. 23A, 2135, (1968).
6. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005).
7. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Optics Lett. 28, 1870, (2003).
8. H.L. Offerhaus, B. van de Bergen, M. Escalante, F.B. Segerink, J.P. Korterik, and N.F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5, 2144, (2005).
9. J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
10. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996).
11. J. h. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005).
12. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
13. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,“ Ann. Phys. 25, 377 (1908).
14. V. M. Shalaev, R. Botet, J. Mercer, E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996).
15. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985).
16. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B. 52, 11441 (1995).
17. W. L. Barnes, S. C. Kitson, T. W. preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654 (1997).
18. C. Bonnand, J. Bellessa, C. Symond, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” App. Phys. Lett. 89,231119 (2006).
19. A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Optics Lett. 5, 368 (1980).
20. A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24, 4906 (1981).
21. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449 (2002).
22. K T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002).
23. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007).
24. D. M. Schaadt, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
25. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91, 191111 (2007).
26. S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐ heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390 (1993).
27. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).
28. E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308, 1274 (2005).
29. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79, 711 (2001).
30. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, New York, 1997).
31. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003).
32. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94, 2779 (2003).
33. F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L.Wei, “Energy band bowing parameter in AlxGa1–xN alloys,” J. Appl. Phys. 92, 4837 (2002).
34. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411 (2003).
35. I. Ho, and G. B. Stringfellow. “ Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69, 2701 (1996).
36. K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi. M. Terazima, and T. Mukai, “Confocal microphotoluminescence of InGaN-based light-emitting diodes,” J. Appl. Phys. 98, 064503 (2005), and references therein.
37. C. Wetzel,T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85, 866 (2004).
38. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
39. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160 (2007).
40. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,”Appl. Phys. Lett. 73, 1691 (1998).
41. A. Hangleiter, F. Hitzel, S. Lahmann, and U. Rossow, “Composition dependence of polarization fields in GaInN/GaN quantum wells,” Appl. Phys. Lett. 83, 1169 (2003).
42. I. H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, “A self‐consistent solution of Schrödinger–Poisson equations using a nonuniform mesh,” J. Appl. Phys. 68, 4071 (1990).
43. N. E. Hecker, R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75, 1577 (1999).
44. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quant. Elec. 36, 1131 (2000).
45. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393 (2002).
46. I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).
47. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
48. E.M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 681 (1946).
49. N. Gao, K. Huang, J. Li, S. Li, X. Yang, & J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Sci. Rep. 2, 816 (2012).
50. C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock & M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013).
51. J. N. Anker, W. P Hall, O. Lyandres, N. C. Shah, J. Zhao & R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442-453 (2008).
52. K. Ray, M. H. Chowdhury & J. R. Lakowicz, “Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region,” Anal. Chem. 79, 6480-6487 (2007).
53. H. R. Stuart & D. G. Hall “Absorption enhancement in silicon‐on‐insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327-2329 (1996).
54. T. F. Villesen, C. Uhrenfeldt, B. Johansen, J. L. Hansen, H. U. Ulriksen, A. N. Larsen, “Aluminum nanoparticles for plasmon-improved coupling of light into silicon,” Nanotechnology 23, 085202 (2012).
55. H. A. Atwater & A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205-213 (2010).
56. F. J. Beck, A. Polman & K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys. 105, 114310 (2009).
57. V. Kochergin, L. Neely, C. Y. Jao & H. D. Robinson, “Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices,” Appl. Phys. Lett. 98, 133305 (2011).
58. S. K. Jha, Z. Ahmed, M. Agio, Y. Ekinci & J. F. Löffler, “Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays,” J. Am. Chem. Soc. 134, 1966-1969 (2012).
59. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander & N. J. Halas, “Aluminum for plasmonics,” ACS nano 8, 834-840 (2013).
60. S. Lal, S. Link & N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon. 1, 641-648 (2007).
61. J. B. Khurgin & A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” Mater. Res. Soc. Bull. 37, 768-779 (2012).
62. Y. Yang, J. M. Callahan, T. H. Kim, A. S. Brown & H. O. Everitt, “Ultraviolet nanoplasmonics: a demonstration of surface-enhanced Raman spectroscopy, fluorescence, and photodegradation using gallium nanoparticles,” Nano Lett. 13, 2837-2841 (2013).
63. T. F. Villesen, C. Uhrenfeldt, B. Johansen & A. N. Larsen, “Self-assembled Al nanoparticles on Si and fused silica, and their application for Si solar cells,” Nanotechnology. 24, 275606 (2013).
64. A. Ono, M. Kikawada, R. Akimoto, W. Inami & Y. Kawata, “Fluorescence enhancement with deep-ultraviolet surface plasmon excitation,” Opt. Express. 21, 17447-17453 (2013).
65. G. Maidecchi, G. Gonella, R. P. Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, & F. Bisio,“Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano. 7, 5834-5841 (2013).
66. J. M. Sanz, D. Ortiz, R. Alcaraz De La Osa, J. M. Saiz, F. González, A. S. Brown, & F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near-and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C, 117, 19606-19615 (2013).
67. C. Langhammer, M. Schwind, B. Kasemo, & I. Zoric, “Localized surface plasmon resonances in aluminum nanodisks,” Nano Lett. 8, 1461-1471(2008).
68. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601-605 (2004).
69. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
70. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
71. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914-A929 (2011).
72. Y. Kuo, W. Y. Chang, C. H. Lin, C. C. Yang, and Y. W. Kiang, “Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating,” Opt. Express 23, 30709-30720 (2015).
73. C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842-A856 (2014).
74. C. H. Lin, C. Y. Su, Y. Kuo, C. H. Chen, Y. F. Yao, P. Y. Shih, H. S. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles,” Appl. Phys. Lett. 105, 101106 (2014).
75. C. H. Lin, C. H. Chen, Y. F. Yao, C. Y. Su, P. Y. Shih, H. S. Chen, C. Hsieh, Y. Kuo, Y. W. Kiang, and C. C. Yang, “Behaviors of surface plasmon coupled light-emitting diodes induced by surface Ag nanoparticles on dielectric interlayers,” Plasmonics 10, 1029-1040 (2015).
76. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010).
77. C. H. Lin, C. Y. Su, E. Zhu, Y. F. Yao, C. Hsieh, C. G. Tu, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Modulation behaviors of surface plasmon coupled light-emitting diode,” Opt. Express 23, 8150-8161 (2015).
78. K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Unique optical properties of AlGaNAlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett. 84, 5264-5266 (2004).
79. J. E. Northrup, C. L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N. M. Johnson, and T. Kolbe, “Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells,” Appl. Phys. Lett. 100, 021101 (2012).
80. H. Lu, T. Yu, G. Yuan, X. Chen, Z. Chen, G. Chen, and G. Zhang, “Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells,” Opt. Lett. 37, 3693-3695 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50557-
dc.description.abstract本研究顯示對鋁的薄膜做高溫熱退火可製作鋁的奈米顆粒來產生表面電漿
子耦合效果,能提升氮化鋁鎵深紫外光量子井的內部量子效率。藉由比較不同製作鋁奈米顆粒的條件,包括在高溫熱退火前鋁薄膜的厚度、高溫熱退火的溫度、高溫熱退火時間,可以調整鋁奈米顆粒表面電漿子共振行為。經過最佳化,使表面電漿子共振波長盡可能靠近深紫外光量子井發光波長。
透過變溫光致發螢光可以量測出量子井內部量子效率在不同出光極化方向
的增強。由於重/輕電洞價帶與分離價帶之能帶相差很小,所以橫向電波與橫向磁波極化出光的內部量子效率大約相同。透過表面電漿子耦合增強後,不同偏振方向的內部量子效率也差不多的,原因應該是表面電漿子會同時和橫向電波與橫向磁波耦合。表面電漿子也可能和激發雷射耦合增強雷射激發而量到較高的內部量子效率。內部量子效率的增強會隨著量子井與奈米顆粒結構的距離減少而增加。製作完成的鋁奈米顆粒表面會形成一層氧化層,但這氧化層只有幾奈米厚,對於表面電漿子耦合不會有太大的影響。
zh_TW
dc.description.abstractThe enhancement of internal quantum efficiency (IQE) of deep-ultraviolet (UV) AlxGa1-xN/AlyGa1-yN (x < y) quantum wells (QWs) by fabricating surface Al nanoparticles (NPs) on a QW structure through thermally annealing an Al thin film for inducing surface plasmon (SP) coupling is demonstrated. By comparing the localized surface plasmon (LSP) resonance behaviors of Al NPs formed with different deposited Al-film thicknesses, annealing temperatures and durations, optimized fabrication conditions are obtained for producing LSP resonance close to the QW emission wavelength in the deep-UV range. Through temperature-dependent photoluminescence (PL) measurement, the enhancements of IQE in different emission polarizations are illustrated. Due to the small difference in energy band level between the heavy/light hole and split-off valence bands, the IQEs of the transverse-electric- (TE-) and transverse-magnetic- (TM-) polarized emissions are about the same. With SP coupling, the similar IQEs between different polarizations can also be attributed to the simultaneous SP couplings of the TE- and TM-polarized transitions. The strong LSP resonance at the excitation laser wavelength may lead to stronger excitation and hence higher IQE levels. The IQE enhancement decreases with the distance between surface Al NPs and the QWs. The surface Al NPs can be oxidized after they are fabricated. However, the thin oxidization layer of a couple nm in thickness does not significantly affect the SP coupling effects.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:46:03Z (GMT). No. of bitstreams: 1
ntu-105-R02941101-1.pdf: 12368346 bytes, checksum: f803eeec39cf884bd133c2a20f5f7958 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsChapter1 Introduction ....................................................................................... 1
1.1 Surface plasmons ......................................................................................... 1
1.1.1 Surface plasmon polaritons ...................................................................... 1
1.1.2 Localized surface plasmons ...............................................................3
1.1.3 Application of surface plasmons ..............................................................5
1.2 Nitride-based semiconductors for optoelectronics ......................................7
Application of nitride-based devices ................................................................7
1.3 Coupling between AlGaN quantum wells and surface plasmons ........................................................ 8
1.4 Localized surface plasmon behaviors of aluminum nanoparticles .................................................................... 10
1.5 Research motivation ........................................................................ 11
1.6 Organization of this thesis ....................................................................... 13
Chapter 2 samples growth conditions, process procedures and designation ........................................................................ 23
2.1 Sample growth conditions ...................................................................... 23
2.2 Sample designation ....................................................24
2.3 AlGaN and AlGaN quantum wells ...........................................................24
2.4 Process procedures ......................................................................... 25
Chapter3 Surface plasmon resonance behaviors of surface Al nanoparticles ..................................................................32
3.1 Key parameters for fabricating surface Al NPs and optimizing ................... 32
3.2 LSP resonance behavior of dielectric interlayer and a dielectric layer covering in a surface Al NP structure ...............................................................................34
3.3 Surface Al NPs on quantum wells ................................................................. 35
Chapter 4 Photoluminescene measurement results ................................................................50
4.1 Photoluminescence measurement setup .................................................................. 50
4.2 Photoluminescence measurement results ........................................................................ 50
Chapter 5 Discussions ........................................................................ 77
Discussions ............................................................................. 77
Chapter 6 Conclusions ................................................................................... 79
Conclusions ............................................................................. 79
Reference ..................................................................... 80
dc.language.isoen
dc.subject鋁奈米顆粒zh_TW
dc.subject鋁奈米顆粒zh_TW
dc.subjectAl Nanoparticleen
dc.subjectAl Nanoparticleen
dc.title利用表面鋁奈米顆粒結構產生表面電漿子耦合效
果來提升氮化鋁鎵深紫外光量子井的發光效率
zh_TW
dc.titleEmission Efficiency Enhancement of Deep-ultraviolet
AlGaN Quantum Wells through Surface Plasmon
Coupling with Surface Al Nanoparticles
en
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋,江衍偉,吳肇欣,吳育任
dc.subject.keyword鋁奈米顆粒,zh_TW
dc.subject.keywordAl Nanoparticle,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201601232
dc.rights.note有償授權
dc.date.accepted2016-07-25
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
12.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved