Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50545
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor彭福佐(Fu-Chuo Peng)
dc.contributor.authorTi-Yen Yehen
dc.contributor.author葉帝言zh_TW
dc.date.accessioned2021-06-15T12:45:29Z-
dc.date.available2019-08-26
dc.date.copyright2016-08-26
dc.date.issued2016
dc.date.submitted2016-07-25
dc.identifier.citationAgoulnik, I. U., Vaid, A., Bingman, W. E., 3rd, Erdeme, H., Frolov, A., Smith, C. L., . . . Weigel, N. L. (2005). Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res, 65(17), 7959-7967. doi:10.1158/0008-5472.CAN-04-3541
Arakawa, H. (2004). Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer, 4(12), 978-987. doi:10.1038/nrc1504
Beltran, H., Rickman, D. S., Park, K., Chae, S. S., Sboner, A., MacDonald, T. Y., . . . Rubin, M. A. (2011). Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov, 1(6), 487-495. doi:10.1158/2159-8290.CD-11-0130
Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., . . . Grimmond, S. M. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491(7424), 399-405. doi:10.1038/nature11547
Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., & Cheresh, D. A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell, 79(7), 1157-1164.
Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., . . . Schultz, N. (2012). The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov, 2(5), 401-404. doi:10.1158/2159-8290.CD-12-0095
Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., . . . Sawyers, C. L. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med, 10(1), 33-39. doi:10.1038/nm972
Chodak, G. W., Kranc, D. M., Puy, L. A., Takeda, H., Johnson, K., & Chang, C. (1992). Nuclear localization of androgen receptor in heterogeneous samples of normal, hyperplastic and neoplastic human prostate. J Urol, 147(3 Pt 2), 798-803.
Chung, L. W., & Davies, R. (1996). Prostate epithelial differentiation is dictated by its surrounding stroma. Mol Biol Rep, 23(1), 13-19.
Craft, N., Chhor, C., Tran, C., Belldegrun, A., DeKernion, J., Witte, O. N., . . . Sawyers, C. L. (1999). Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res, 59(19), 5030-5036.
Dickson, B. J., & Gilestro, G. F. (2006). Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol, 22, 651-675. doi:10.1146/annurev.cellbio.21.090704.151234
Edwards, J., Krishna, N. S., Grigor, K. M., & Bartlett, J. M. (2003). Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer, 89(3), 552-556. doi:10.1038/sj.bjc.6601127
Feng, H., Cheng, A. S., Tsang, D. P., Li, M. S., Go, M. Y., Cheung, Y. S., . . . Sung, J. J. (2011). Cell cycle-related kinase is a direct androgen receptor-regulated gene that drives beta-catenin/T cell factor-dependent hepatocarcinogenesis. J Clin Invest, 121(8), 3159-3175. doi:10.1172/JCI45967
Fidler, I. J. (2001). Regulation of neoplastic angiogenesis. J Natl Cancer Inst Monogr(28), 10-14.
Fitamant, J., Guenebeaud, C., Coissieux, M. M., Guix, C., Treilleux, I., Scoazec, J. Y., . . . Mehlen, P. (2008). Netrin-1 expression confers a selective advantage for tumor cell survival in metastatic breast cancer. Proc Natl Acad Sci U S A, 105(12), 4850-4855. doi:10.1073/pnas.0709810105
Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., . . . Seed, B. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94(6), 715-725.
Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., . . . Schultz, N. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal, 6(269), pl1. doi:10.1126/scisignal.2004088
Gao, W., Bohl, C. E., & Dalton, J. T. (2005). Chemistry and structural biology of androgen receptor. Chem Rev, 105(9), 3352-3370. doi:10.1021/cr020456u
Greenberg, J. M., Thompson, F. Y., Brooks, S. K., Shannon, J. M., & Akeson, A. L. (2004). Slit and robo expression in the developing mouse lung. Dev Dyn, 230(2), 350-360. doi:10.1002/dvdy.20045
Harris, W. P., Mostaghel, E. A., Nelson, P. S., & Montgomery, B. (2009). Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat Clin Pract Urol, 6(2), 76-85. doi:10.1038/ncpuro1296
Hashizume, H., Falcon, B. L., Kuroda, T., Baluk, P., Coxon, A., Yu, D., . . . McDonald, D. M. (2010). Complementary actions of inhibitors of angiopoietin-2 and VEGF on tumor angiogenesis and growth. Cancer Res, 70(6), 2213-2223. doi:10.1158/0008-5472.CAN-09-1977
Heinlein, C. A., & Chang, C. (2004). Androgen receptor in prostate cancer. Endocr Rev, 25(2), 276-308. doi:10.1210/er.2002-0032
Henshall, S. M., Quinn, D. I., Lee, C. S., Head, D. R., Golovsky, D., Brenner, P. C., . . . Sutherland, R. L. (2001). Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Res, 61(2), 423-427.
Hinck, L. (2004). The versatile roles of 'axon guidance' cues in tissue morphogenesis. Dev Cell, 7(6), 783-793. doi:10.1016/j.devcel.2004.11.002
Hobisch, A., Culig, Z., Radmayr, C., Bartsch, G., Klocker, H., & Hittmair, A. (1996). Androgen receptor status of lymph node metastases from prostate cancer. Prostate, 28(2), 129-135. doi:10.1002/(SICI)1097-0045(199602)28:2<129::AID-PROS9>3.0.CO;2-B
Howitt, J. A., Clout, N. J., & Hohenester, E. (2004). Binding site for Robo receptors revealed by dissection of the leucine-rich repeat region of Slit. EMBO J, 23(22), 4406-4412. doi:10.1038/sj.emboj.7600446
Iversen, P., Tyrrell, C. J., Kaisary, A. V., Anderson, J. B., Van Poppel, H., Tammela, T. L., . . . Melezinek, I. (2000). Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol, 164(5), 1579-1582.
Jones, C. A., London, N. R., Chen, H., Park, K. W., Sauvaget, D., Stockton, R. A., . . . Li, D. Y. (2008). Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med, 14(4), 448-453. doi:10.1038/nm1742
Latil, A., Chene, L., Cochant-Priollet, B., Mangin, P., Fournier, G., Berthon, P., & Cussenot, O. (2003). Quantification of expression of netrins, slits and their receptors in human prostate tumors. Int J Cancer, 103(3), 306-315. doi:10.1002/ijc.10821
Legg, J. A., Herbert, J. M., Clissold, P., & Bicknell, R. (2008). Slits and Roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis, 11(1), 13-21. doi:10.1007/s10456-008-9100-x
Li, H., Adachi, Y., Yamamoto, H., Min, Y., Ohashi, H., Ii, M., . . . Shinomura, Y. (2011). Insulin-like growth factor-I receptor blockade reduces tumor angiogenesis and enhances the effects of bevacizumab for a human gastric cancer cell line, MKN45. Cancer, 117(14), 3135-3147. doi:10.1002/cncr.25893
Lin, D., Wyatt, A. W., Xue, H., Wang, Y., Dong, X., Haegert, A., . . . Wang, Y. (2014). High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res, 74(4), 1272-1283. doi:10.1158/0008-5472.CAN-13-2921-T
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262
Macias, H., Moran, A., Samara, Y., Moreno, M., Compton, J. E., Harburg, G., . . . Hinck, L. (2011). SLIT/ROBO1 signaling suppresses mammary branching morphogenesis by limiting basal cell number. Dev Cell, 20(6), 827-840. doi:10.1016/j.devcel.2011.05.012
Mahajan, K., Coppola, D., Rawal, B., Chen, Y. A., Lawrence, H. R., Engelman, R. W., . . . Mahajan, N. P. (2012). Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J Biol Chem, 287(26), 22112-22122. doi:10.1074/jbc.M112.357384
Marques, R. B., Dits, N. F., Erkens-Schulze, S., van Weerden, W. M., & Jenster, G. (2010). Bypass mechanisms of the androgen receptor pathway in therapy-resistant prostate cancer cell models. PLoS One, 5(10), e13500. doi:10.1371/journal.pone.0013500
Medioni, C., Bertrand, N., Mesbah, K., Hudry, B., Dupays, L., Wolstein, O., . . . Zaffran, S. (2010). Expression of Slit and Robo genes in the developing mouse heart. Dev Dyn, 239(12), 3303-3311. doi:10.1002/dvdy.22449
Migeon, B. R., Brown, T. R., Axelman, J., & Migeon, C. J. (1981). Studies of the locus for androgen receptor: localization on the human X chromosome and evidence for homology with the Tfm locus in the mouse. Proc Natl Acad Sci U S A, 78(10), 6339-6343.
Mohler, J. L., Chen, Y., Hamil, K., Hall, S. H., Cidlowski, J. A., Wilson, E. M., . . . Sar, M. (1996). Androgen and glucocorticoid receptors in the stroma and epithelium of prostatic hyperplasia and carcinoma. Clin Cancer Res, 2(5), 889-895.
Morlot, C., Thielens, N. M., Ravelli, R. B., Hemrika, W., Romijn, R. A., Gros, P., . . . McCarthy, A. A. (2007). Structural insights into the Slit-Robo complex. Proc Natl Acad Sci U S A, 104(38), 14923-14928. doi:10.1073/pnas.0705310104
Nguyen Ba-Charvet, K. T., Brose, K., Ma, L., Wang, K. H., Marillat, V., Sotelo, C., . . . Chedotal, A. (2001). Diversity and specificity of actions of Slit2 proteolytic fragments in axon guidance. J Neurosci, 21(12), 4281-4289.
Palmgren, J. S., Karavadia, S. S., & Wakefield, M. R. (2007). Unusual and underappreciated: small cell carcinoma of the prostate. Semin Oncol, 34(1), 22-29. doi:10.1053/j.seminoncol.2006.10.026
Piper, M., Georgas, K., Yamada, T., & Little, M. (2000). Expression of the vertebrate Slit gene family and their putative receptors, the Robo genes, in the developing murine kidney. Mech Dev, 94(1-2), 213-217.
Qin, J., Liu, X., Laffin, B., Chen, X., Choy, G., Jeter, C. R., . . . Tang, D. G. (2012). The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10(5), 556-569. doi:10.1016/j.stem.2012.03.009
Ryan, C. J., Smith, A., Lal, P., Satagopan, J., Reuter, V., Scardino, P., . . . Scher, H. I. (2006). Persistent prostate-specific antigen expression after neoadjuvant androgen depletion: an early predictor of relapse or incomplete androgen suppression. Urology, 68(4), 834-839. doi:10.1016/j.urology.2006.04.016
Rycaj, K., Cho, E. J., Liu, X., Chao, H. P., Liu, B., Li, Q., . . . Tang, D. G. (2016). Longitudinal tracking of subpopulation dynamics and molecular changes during LNCaP cell castration and identification of inhibitors that could target the PSA-/lo castration-resistant cells. Oncotarget, 7(12), 14220-14240. doi:10.18632/oncotarget.7303
Sadi, M. V., Walsh, P. C., & Barrack, E. R. (1991). Immunohistochemical study of androgen receptors in metastatic prostate cancer. Comparison of receptor content and response to hormonal therapy. Cancer, 67(12), 3057-3064.
Samant, R. S., & Shevde, L. A. (2011). Recent advances in anti-angiogenic therapy of cancer. Oncotarget, 2(3), 122-134. doi:10.18632/oncotarget.234
Schally, A. V., Comaru-Schally, A. M., Plonowski, A., Nagy, A., Halmos, G., & Rekasi, Z. (2000). Peptide analogs in the therapy of prostate cancer. Prostate, 45(2), 158-166.
Schally, A. V., Kastin, A. J., & Arimura, A. (1971). Hypothalamic follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-regulating hormone: structure, physiology, and clinical studies. Fertil Steril, 22(11), 703-721.
Schimmelpfeng, K., Gogel, S., & Klambt, C. (2001). The function of leak and kuzbanian during growth cone and cell migration. Mech Dev, 106(1-2), 25-36.
Sennino, B., Ishiguro-Oonuma, T., Wei, Y., Naylor, R. M., Williamson, C. W., Bhagwandin, V., . . . McDonald, D. M. (2012). Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov, 2(3), 270-287. doi:10.1158/2159-8290.CD-11-0240
Shafi, A. A., Yen, A. E., & Weigel, N. L. (2013). Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacol Ther, 140(3), 223-238. doi:10.1016/j.pharmthera.2013.07.003
Shen, M. M., & Abate-Shen, C. (2010). Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev, 24(18), 1967-2000. doi:10.1101/gad.1965810
Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA Cancer J Clin, 65(1), 5-29. doi:10.3322/caac.21254
Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., . . . O'Malley, B. W. (1997). Steroid receptor coactivator-1 is a histone acetyltransferase. Nature, 389(6647), 194-198. doi:10.1038/38304
Sramkoski, R. M., Pretlow, T. G., 2nd, Giaconia, J. M., Pretlow, T. P., Schwartz, S., Sy, M. S., . . . Jacobberger, J. W. (1999). A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim, 35(7), 403-409. doi:10.1007/s11626-999-0115-4
Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., . . . Gerald, W. L. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell, 18(1), 11-22. doi:10.1016/j.ccr.2010.05.026
Thiebault, K., Mazelin, L., Pays, L., Llambi, F., Joly, M. O., Scoazec, J. Y., . . . Mehlen, P. (2003). The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Proc Natl Acad Sci U S A, 100(7), 4173-4178. doi:10.1073/pnas.0738063100
Thompson, I. M., Pauler, D. K., Goodman, P. J., Tangen, C. M., Lucia, M. S., Parnes, H. L., . . . Coltman, C. A., Jr. (2004). Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med, 350(22), 2239-2246. doi:10.1056/NEJMoa031918
Tseng, R. C., Lee, S. H., Hsu, H. S., Chen, B. H., Tsai, W. C., Tzao, C., & Wang, Y. C. (2010). SLIT2 attenuation during lung cancer progression deregulates beta-catenin and E-cadherin and associates with poor prognosis. Cancer Res, 70(2), 543-551. doi:10.1158/0008-5472.CAN-09-2084
Tuxhorn, J. A., Ayala, G. E., & Rowley, D. R. (2001). Reactive stroma in prostate cancer progression. J Urol, 166(6), 2472-2483.
van der Kwast, T. H., Schalken, J., Ruizeveld de Winter, J. A., van Vroonhoven, C. C., Mulder, E., Boersma, W., & Trapman, J. (1991). Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer, 48(2), 189-193.
Visakorpi, T., Hyytinen, E., Koivisto, P., Tanner, M., Keinanen, R., Palmberg, C., . . . Kallioniemi, O. P. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet, 9(4), 401-406. doi:10.1038/ng0495-401
Voegel, J. J., Heine, M. J., Zechel, C., Chambon, P., & Gronemeyer, H. (1996). TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J, 15(14), 3667-3675.
Wang, B., Xiao, Y., Ding, B. B., Zhang, N., Yuan, X., Gui, L., . . . Geng, J. G. (2003). Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell, 4(1), 19-29.
Wang, L. J., Zhao, Y., Han, B., Ma, Y. G., Zhang, J., Yang, D. M., . . . Geng, J. G. (2008). Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis. Cancer Sci, 99(3), 510-517. doi:10.1111/j.1349-7006.2007.00721.x
Wirth, M., Tyrrell, C., Wallace, M., Delaere, K. P., Sanchez-Chapado, M., Ramon, J., . . . Stone, A. (2001). Bicalutamide (Casodex) 150 mg as immediate therapy in patients with localized or locally advanced prostate cancer significantly reduces the risk of disease progression. Urology, 58(2), 146-151.
Yao, J. L., Madeb, R., Bourne, P., Lei, J., Yang, X., Tickoo, S., . . . Anthony di Sant'Agnese, P. (2006). Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol, 30(6), 705-712.
Yeh, S., Miyamoto, H., Shima, H., & Chang, C. (1998). From estrogen to androgen receptor: a new pathway for sex hormones in prostate. Proc Natl Acad Sci U S A, 95(10), 5527-5532.
Zegarra-Moro, O. L., Schmidt, L. J., Huang, H., & Tindall, D. J. (2002). Disruption of androgen receptor function inhibits proliferation of androgen-refractory prostate cancer cells. Cancer Res, 62(4), 1008-1013.
Zhou, W. J., Geng, Z. H., Chi, S., Zhang, W., Niu, X. F., Lan, S. J., . . . Geng, J. G. (2011). Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis. Cell Res, 21(4), 609-626. doi:10.1038/cr.2011.17
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50545-
dc.description.abstract雄性賀爾蒙去除療法(androgen deprivation therapy)是轉移型攝護腺癌的標準療法,然而腫瘤在給予雄性賀爾蒙去除療法的數年後便復發並轉變成高死亡率的抗去勢型攝護腺癌(castration resistant prostate cancer, CRPC)。然而其機制目前尚未了解,因此本研究利用Bicalutamide來建立一雄性賀爾蒙受體與攝護腺特異抗原低表現(ARlow/PSAlow)之抗去勢型攝護腺癌細胞株,LN30,並進一步發現一軸突導向(axon guidance)分子,Slit1在LN30細胞中有大量表現的現象。在臨床資料庫中發現腫瘤細胞中Slit1的高表現與無疾病存活期(disease free survival)有一負相關之現象。Slit1可以作為AR的輔活化因子(coactivator),直接與AR交互作用並促進AR的活性,導致攝護腺癌細胞可以存活於雄性賀爾蒙去除療法並對其產生抗性。LN30不論在體外模式或體內模式體外模式中,細胞去除Slit1後其細胞生長受到顯著性的抑制。此外,我們更發現Slit1不僅在攝護腺癌中扮演重要的角色,也在內皮細胞中有有ㄧ重要的角色。Slit1為一分泌型分子,在體外試驗模式中Slit1可透過旁分泌(paracrine)的機制誘導人類臍帶靜脈內皮細胞(human, umbilical vein endothelial cells, HUVECs)增生、移行與管狀構造形成,在體內試驗模式中可以促使雞胚胎絨毛尿囊膜(chick chorioallantoic membrane, CAM)的血管數目增加。綜合以上結果,本研究確認Slit1為AR的輔活化因子,且在抗去勢型攝護腺癌中為一有潛力的治療標的。zh_TW
dc.description.abstractAndrogen deprivation therapy (ADT) is the standard first line therapy for metastatic prostate cancer. Unfortunately, cancer usually relapses after ADT in several years and becomes castration resistant prostate cancer (CRPC) with high mortality. However, the detail mechanism is still unclear. In this study, we use Bicalutamide to establish a CRPC cell line, LN30, with ARlow/PSAlow characteristic. Moreover, we find Slit1, an axon guidance molecule, is overexpression in LN30 cells. Higher Slit1 expression is observed in tumor and inversely correlates with disease free survival in clinical database. Slit1 acts as a coactivator of AR, directly interacts with AR and enhances AR activity to lead prostate cancer cells survive and resistant to ADT. Slit1 depletion dramatically suppressed the growth of LN30 cells in vitro and in vivo model. Moreover, we reveal Slit1 not merely play a pivotal role in prostate cancer cells but also in endothelial cells. Slit1 acts as a paracrine induces proliferation, migration and tube formation in human umbilical vein endothelial cells (HUVECs) in in vitro model and increase blood vessel numbers in CAM assay in in vivo model. Taken together, this study identifies Slit1 as a novel coactivator of AR and a potential therapeutic target in CRPC.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:45:29Z (GMT). No. of bitstreams: 1
ntu-105-F96447006-1.pdf: 3129327 bytes, checksum: e39673b1b316d92f257eae73a279b404 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsCONTENTS 1
中文摘要 3
ABSTRACT 4
LIST OF FIGURES 5
LIST OF TABLES 5
INTRODUCTION 6
1.1 PROSTATE CANCER 6
1.2 ANDROGEN RECEPTOR 6
1.3 HISTORY OF ANDROGEN DEPRIVATION THERAPY 8
1.4 CASTRATION RESISTANT MECHANISM 9
1.5 SLITS FAMILY 10
1.6 TUMOR MICROENVIRONMENT AND ANGIOGENESIS 11
1.7 MOTIVATION AND AIMS 12
MATERIALS AND METHODS 13
2.1 REAGENT AND ANTIBODIES 13
2.2 CELL CULTURE 13
2.3 CELL PROLIFERATION ELISA, BRDU (COLORIMETRIC) 13
2.4 PSA ELISA 14
2.5 COLONY FORMATION ASSAY 14
2.6 WESTERN BLOT AND IMMUNOPRECIPITATION ANALYSIS 15
2.7 MICROARRAY ANALYSIS 15
2.8 TOTAL RNA ISOLATION AND QRT-PCR 16
2.9 PLASMID AND TRANSFECTION 17
2.10 SUBCUTANEOUS XENOGRAFT TUMOR MODEL 17
2.11 LUCIFERASE REPORTER ASSAY 18
2.12 HUVECS PROLIFERATION ASSAY 18
2.13 WOUND HEALING ASSAY 18
2.14 TUBE FORMATION ASSAY 19
2.15 CHICK CHORIOALLANTOIC MEMBRANE ASSAY (CAM ASSAY) 19
2.16 STATISTICAL ANALYSIS 20
RESULTS 21
3.1 ESTABLISHMENT AND CHARACTERIZATION OF CRPC CELL LINE, LN30 21
3.2 SLIT1 UP-REGULATION IN GENE EXPRESSION PROFILE IN LN30 CELLS 22
3.3 EXPRESSION OF SLIT1 CORRELATES WITH DISEASE FREE SURVIVAL OF CANCER PATIENTS 24
3.4 SLIT1 PROTEIN INDUCES CELL PROLIFERATION IN LN30 CELLS THROUGH ENHANCES AR ACTIVITY 25
3.5 SLIT1 PROTEIN INTERACT WITH AR 26
3.6 SLIT1 PROTEIN INDUCES ANGIOGENESIS 27
DISCUSSION 29
CONCLUSION 34
REFERENCES 35
FIGURES & TABLES 42
dc.language.isoen
dc.subject雄性賀爾蒙去除療法zh_TW
dc.subjectSlit1zh_TW
dc.subjectBicalutamidezh_TW
dc.subject抗去勢型攝護腺癌zh_TW
dc.subject雄性賀爾蒙受體zh_TW
dc.subject雄性賀爾蒙去除療法zh_TW
dc.subjectSlit1zh_TW
dc.subjectBicalutamidezh_TW
dc.subject抗去勢型攝護腺癌zh_TW
dc.subject雄性賀爾蒙受體zh_TW
dc.subjectSlit1en
dc.subjectADTen
dc.subjectARen
dc.subjectCRPCen
dc.subjectBicalutamideen
dc.subjectSlit1en
dc.subjectADTen
dc.subjectARen
dc.subjectCRPCen
dc.subjectBicalutamideen
dc.title探討Slit1蛋白在抗去勢型攝護腺癌進展過程中所扮演之角色zh_TW
dc.titleStudy on the Role of Slit1 Protein in Castration Resistant Prostate Cancer Progressionen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree博士
dc.contributor.oralexamcommittee林國煌,巖正傑,華國泰,李維駿
dc.subject.keyword雄性賀爾蒙去除療法,雄性賀爾蒙受體,抗去勢型攝護腺癌,Bicalutamide,Slit1,zh_TW
dc.subject.keywordADT,AR,CRPC,Bicalutamide,Slit1,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201601335
dc.rights.note有償授權
dc.date.accepted2016-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved