Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50540
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊志忠
dc.contributor.authorShih-Yang Chenen
dc.contributor.author陳師揚zh_TW
dc.date.accessioned2021-06-15T12:45:15Z-
dc.date.available2016-09-13
dc.date.copyright2016-09-13
dc.date.issued2016
dc.date.submitted2016-07-25
dc.identifier.citation[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178-1181 (1991).
[2] D.C. Adler, y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. C. Fujimoto, Nature Photonics 1, 709-716 (2007).
[3] S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, Opt. Express 11, 2953-2963 (2003).
[4] B. Cense, N. Nassif, T. Chen, M. Pierce, S. -H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, Opt. Express 12, 2435-2447 (2004).
[5] R. Huber, M. Wojtkowski, and J. G. Fujimoto, Opt. Express 14, 3225-3237 (2006).
[6] R. Huber, D. C. Adler, and J. G. Fujimoto, Opt. Lett. 31, 2975-2977 (2006).
[7] M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, Arch. Ophthalmol. 113, 326-332 (1995).
[8] J. S. Schuman, P. K. Tamar, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, Ophthalmology 103, 1889-1898 (1996).
[9] M. R. Hee, C. A. Puliafito, J.S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J.S. Schuman, E. A. Swanson, and J. G. Fujimoto, Ophthalmology 105, 360-370 (1998).
[10] W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, Nat. Med. 7, 501-507 (2001).
[11] J.S. Schuman, C.A. Puliafito, and J.G. Fujimoto, Optical Coherence Tomography of Ocular Disease, 2nd edn. (Slack Inc., Thorofare, NJ, 2004).
[12] B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, and J.F. de Boer, J. Biomed. Opt. 6, 474-479 (2001).
[13] S. Jiao, W. Yu, G. Stoica, and L.V. Wang, Appl. Opt. 42, 5191-5197 (2003).
[14] S. M. Srinivas, J. F. D. Boer, and H. Park, J. Biomed. Opt. 9, 207-212 (2004).
[15] G.J. Tearney, M.E. Brezinski, J.F. Southern, B.E. Bouma, S.A. Boppart, and J.G. Fujimoto, Am. J. Gastroenterol. 92, 1800-1804 (1997).
[16] M.V. Sivak, K. Kobayashi, J.A. Izatt, et al., Gastrointest Endosc. 51, 474-479 (2000).
[17] A.R. Tumlinson, B. Povazay, L.P. Hariri, et al., J. Biomed. Opt. 11, 064003 (2006).
[18] Y. Yang, S. Whiteman, D. Gey van Pittius, Y. He, R.K. Wang, and M.A. Spiteri, Phys. Med. Biol. 49, 1247-1255 (2004).
[19] N. Hanna, D. Saltzman, D. Mukai, et al., J. Thorac Cardiovasc Surg. 129, 615-622 (2005).
[20] M. Tsuboi, A. Hayashi, N. Ikeda, et al., Lung Cancer 56, 387-394 (2005).
[21] S.C. Whiteman, Y. Yang, D. Gey van Pittius, M. Stephens, J. Parmer, and M.A. Spiteri, Clin. Cancer Res. 12, 813-818 (2006).
[22] M.E. Brezinski, G.J. Tearney, N.J. Weissman, et al., Heart 77, 397-403 (1997).
[23] J.G. Fujimoto, S.A. Boppart, G.J. Tearney, B.E. Bouma, C. Pitris, and M.E. Brezinski, Heart 82, 128-133 (1999).
[24] H. Kitabata, T. Kubo, and T. Akasaka, Heart 94, 544 (2008).
[25] B. Wong, R. Jackson, S. Guo S, et al., The Laryngoscope 115, 1904-1911 (2005).
[26] M. T. Tsai, H. C. Lee, C. W. Lu, Y. M. Wang, C. K. Lee, C. C. Yang, and C. P. Chiang, J. Biomed. Opt. 13, 044012 (2008).
[27] M. T. Tsai, H. C. Lee, C. K. Lee, C. H. Yu, H. M. Chen, C. P. Chiang, C. C. Chang, Y. M. Wang, and C. C. Yang, Opt. Express 16, 15847-15862 (2008).
[28].X. J. Wang, T. E. Milner, and J. S. Nelson, Opt. Lett. 20, 1337-1339 (1995).
[29] Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert, and J. S. Nelson, Opt. Lett. 22, 1119-1121 (1997).
[30] J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, Opt. Lett. 22, 934-936 (1997).
[31] G. Yao and L. V. Wang, Opt. Lett. 24, 537-539 (1999).
[32] U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 25, 111-113 (2000)
[33] J. M. Schmitt, S. H. Xiang, and K. M. Yung, J. Opt. Soc. Am. A 15, 2288-2296 (1998)
[34] A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ung-arunyawee, and J. A. Izatt, Opt. Express 3, 219-229 (1998).
[35] G. Hausler and M. W. Lindner, J. Biomed. Opt. 3, 21-31 (1998).
[36] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, Opt. Commun. 117, 43-48 (1995).
[37] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, Opt. Lett. 28, 2067-2069 (2003).
[38] M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, Opt. Express 11, 2183-2189 (2003).
[39] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, Opt. Express 11, 889-894(2003).
[40] M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, Opt. Lett. 27, 1415-1417 (2002).
[41] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, Opt. Lett. 22, 340-342 (1997).
[42] S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, Opt. Express 12, 2977-2998 (2004).
[43] J. Zhang, J. S. Nelson, and Z. Chen, Opt. Lett. 30, 1-3 (2005).
[44] J. Zhang, Q. Wang, B. Rao, Z. Chen, and K. Hsu, Appl. Phys. Lett. 89, 073901 (2006).
[45] Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, Opt. Express 15, 6121-6139 (2007).
[46] R. Huber, M. Wojtkowski, and J.G. Fujimoto, Opt. Express 14, 3225-3237 (2006).
[47] X. J. Wang, T. E. Milner, and J. S. Nelson, Opt. Lett. 20, 1337-1339 (1995).
[48] J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, Opt. Lett. 22, 1439-1441 (1997).
[49] Z. Ding, Y. Zhao, H. Ren, J. Nelson, and Z. Chen, Opt. Express 10, 236-245 (2002).
[50] J. Zhang, J. S. Nelson, and Z. Chen, Opt. Lett. 30, 1-3 (2005).
[51] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, Opt. Lett. 35, 700-702 (2010).
[52] R. V. Kuranov, S. Kazmi, A. B. McElroy, J. W. Kiel, A. K. Dunn, T. E. Milner, and T. Q. Duong, Opt. Express 19, 23831-23844 (2010).
[53] D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, Opt. Express 16, 4376-4393 (2008).
[54] C. Zhou, T. H. Tsai, D. C. Adler, H. C. Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, Opt. Lett. 35, 700-702 (2010).
[55] C. S. Kim, P. Wilder-Smith, Y. C. Ahn, L. H. L. Liaw, Z. Chen, and Y. J. Kwon, J. Biomed. Opt. 14, 034008 (2009).
[56] J. H. Baek, T. Krasieva, S. Tang, Y. Ahn, C. S. Kim, D. Vu, Z. Chen, and P. Wilder-Smith, J. Biomed. Opt. 14, 044001 (2009).
[57] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, Nano Lett. 5, 473-477 (2005).
[58] H. Cang, T. Sun, Z. Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, Opt. Lett. 30, 3048-3050 (2005).
[59] E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, and M. L. Bugrova, Phys. Med. Biol. 53, 4995-5009 (2008).
[60] M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, E. Zagaynova, J. Biomed. Opt. 14, 021017 (2009).
[61] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, Nano Lett. 7, 1929-1934 (2007).
[62] A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, Opt. Express 14, 6724-6738 (2006).
[63] X. Huang and M. A. El-Sayed, J. Adv. Res. 1, 13 (2010).
[64] E. S. Day, J. G. Morton, and J. L. West, J. Biomech. Eng. 131, 074001 (2009).
[65] B. Jang, J. Y. Park, C. H. Tung, I. H. Kim, and Y. Choi, ACS Nano 5,1086-1094 (2011).
[66] M. C. Daniel and D. Astruc, Chem. Rev. 104, 293-346 (2004).
[67] M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky and M. Motamedi, Nano Lett. 9, 287-291 (2009).
[68] W. I. Choi, J. Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, ACS Nano 5, 1995-2003 (2011).
[69] G. von Maltzahn, J. H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, Cancer Res. 69, 3892-3900 (2009).
[70] A. M. Gobin, J. J. Moon, and J. L. West, Internal. J. Nanomed. 3, 351-358 (2008).
[71] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, Nano Lett. 7, 1929-1934 (2007).
[72] L. B. Carpin, L. R. Bickford, G.Agollah, T. K. Yu, R. Schiff, Y. Li, and R. A. Drezek, Breast Cancer Res. Treat. 125, 27-34 (2011).
[73] A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, J. Phys. Chem. B 110, 19935-19944 (2006).
[74] J. Z. Zhang, J. Phys. Chem. Lett. 1, 686-695 (2010).
[75] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia, and X. Li, Nano Lett. 7, 1318-1322 (2007).
[76] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, Nano Lett. 5, 473 (2005).
[77] J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, Small 6, 811-817 (2010).
[78] S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 4212-4217 (1999).
[79] M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, Circulation 93, 1206-1213 (1996).
[80] L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, PNAS 100, 13549-13554 (2003).
[81] H. Y. Tseng, W. F. Chen, Y. W. Kiang, and C. C. Yang, Nanotechnology 24, 065102 (2013).
[82] R. Chen, X. Zheng, H. Qian, X. Wang, J. Wang, and X. Jiang, Biomaterials Science 1, 285-293 (2013).
[83] J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, and M. C. Skala, Biomed. Opt. Express 3, 2881-2895 (2012).
[84] A. Jurranz, P. Jaen, F. S. Rodriguez, J. Cuevas, and S. Gonzalez, Clin. Transl. Oncl. 10, 148-154 (2008).
[85] S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, J. Am. Chem. Soc. 129, 2669-2675 (2007).
[86] I. Yoon, J. Z. Li and Y. K. Shim, Clin. Endosc. 46, 7-23 (2013).
[87] N. M. Idris, M. K. Gnanasammandhan, J. Zhang, P. C. Ho, R. Mahendran, and Y. Zhang, Nature Med. 18, 1580-1585 (2012).
[88] C. Wang, H. Tao, L. Cheng, and Z. Liu, Biomaterials 32, 6145-6154 (2011).
[89] C. Wang, L. Cheng, and Z. Liu, Theranostics 3, 317-330 (2013).
[90] M. E. Lim, Y. L. Lee, Y. Zhang, and J. J. H. Chu, Biomaterials 33, 1912-1920 (2011).
[91] S. S. Lucky, N. M. Idris, Z. Li, K. Huang, K. C. Soo, and Y. Zhang, ACS Nano 9, 191-205 (2015).
[92] D. Gao, R. R. Agayan, H. Xu, M. A. Philbert, and R. Kopelman, Nano Lett. 6, 2383-2386 (2006).
[93] M. Balaz, H. A. Collins, E. Dahlstdet, and H. L. Anderson, Org. Biomol. Chem. 7, 874-888 (2009).
[94] K. S. Samkoe and D. T. Cramb, J. Biomed. Opt. 8, 410-417 (2003).
[95] K. S. Samkoe, A. A. Clancy, A. Karotki, B. C. Wilson, and D. T. Cramb, J. Biomed. Opt. 12, 034025 (2007).
[96] P. K. Frederiksen, M. J?rgensen, and P. R. Ogilby, J. Am. Chem. Soc. 123, 1215-1221 (2001).
[97] P. K. Frederiksen, S. P. Mcllroy, C. B. Nielsen, L. Nikojasen, E. Skovson, M. J?rgensen, K. V. Mikkelsen, and P. R. Ogilby, J. Am. Chem. Soc. 127, 255-269 (2005).
[98] K. Ogawa, H. Hasegawa, Y. Inaba, Y. Kobuke, H. Inouye, Y. Kanemitsu, E. Kohno, T. Hirano, S. Ogura, and I. Okura, J. Med. Chem. 49, 2276-2283 (2006).
[99] J. Liu, Y. W. Zhao, J. Q. Zhao, A. D. Xia, L. J. Jiang, S. Wu, L. Ma, Y. Q. Dong, Y. H. Gu, Photochem. Photobio. 68, 156-164 (2002).
[100] S. P. McIlroy, E. Clo, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, J. Org. Chem. 70, 1134-1146 (2005).
[101] A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, J. Opt. Soc. Am. B 20, 321-332 (2003).
[102] A. Karotki, M. Kruk, M. Drobizhev, A. Rebane, E. Nickel, and C. W. Spangler, IEEE J. Sel. Top. Quantum Electron. 7, 971-975 (2001).
[103] W. G. Fisher, W. P. Partridge, Jr., C. Dees, and E.A. Wachter, Photochem. Photobio. 66, 141-155 (1997).
[104] C. J. Murph, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith, and S. C. Baxter, Acc. Chem. Res. 41, 1721-1730 (2008).
[105] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy and M. D. Wyatt, Small 1, 325-327 (2005).
[106] X. D. Zhang, D. Wu, X. Shen, P. X. Liu, N. Yang, B. Zhao, H. Zhang, Y. M. Sun, L. A. Zhang, and F. Y. Fan, Nanomedicine 6, 2071-2081 (2011).
[107] W. S. Cho, M. Cho, J. Jeong, M. Choi, H. Y. Cho, B. S. Han, S. H. Kim, H. O. Kim, Y. T. Lim, B. H. Chung, and J. Jeong, Toxicol. Appl. Pharmacol. 236, 16-24 (2009).
[108] E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. E. Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. E. Sayed, Cancer Lett. 269, 57-66 (2008).
[109] S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, Adv. Mater. 25, 3055-3061 (2013).
[110] Y. K. Xu, S. Hwang, S. Kim, and J. Y. Chen, ACS Appl. Mater. 6, 5619-5628 (2014).
[111] T. Zhao, K. Yu, L. Li, T. Zhang, Z. Guan, N. Gao, P. Yuan, S. Li, S. Q. Yao, Q. H. Xu, and G. Q. Xu, ACS Appl. Mater. 6, 2700-2708 (2014).
[112] G. Majno and I. Joris, Am. J. Pathol. 146, 3-15 (1995)
[113] B. F. Trump, I. K. Berezesky, S. H. Chang, and P. C. Phelps, Toxicol. Pathol. 25, 82-88 (1997)
[114] D. R. Green and J. C. Reed, Science 281, 1309-1312 (1998)
[115] C. K. Chu, Y. C. Tu, Y. W. Chang, C. K. Chu, S. Y. Chen, T. T. Chi, Y. W. Kiang, and C. C. Yang, Nanotechnology 26, 075102 (2015).
[116] C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, Nanotechnology 27, 115102 (2016).
[117] A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, Appl. Opt. 42, 6953-6958 (2003)
[118] K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, Cancer Res. 63, 1999-2004 (2003).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50540-
dc.description.abstract在本論文中,我們在不同雷射照射條件下利用800奈米波長的高解析度光學同調斷層掃描系統來觀察SCC4口腔癌細胞死亡的過程。癌細胞培養在有金奈米環鍵結光敏劑磺化鋁酞菁(AlPcS)及沒有鍵結光敏劑的金奈米環溶液內,讓細胞吞噬金奈米環。運用侷域表面電漿子共振在1300奈米和1064奈米附近的兩種不同幾何大小金奈米環樣品,在光學同調斷層掃描的同時,利用四種不同雷射來照射癌細胞,包括1310奈米連續波雷射、1064奈米連續波雷射、1064奈米飛秒雷射和660奈米連續波雷射。1310奈米和1064奈米連續波雷射主要是透過金奈米環侷域表面電漿子共振產生光熱效應來損害癌細胞。除了光熱效應,藉由產生加強的雙光子吸收,1064奈米飛秒雷射可以激發AlPcS有效地生成單態氧對觀察的細胞造成傷害。660奈米連續波雷射可以透過單光子吸收激發AlPcS而生成單態氧損害觀察的癌細胞。以光熱效應滅活觀察的癌細胞會造成細胞壞死。透過生成單態氧滅活,細胞膜保持完整並且細胞內部物質聚集成團後產生強散射。在此情況下細胞經由凋亡的過程死亡。照射660奈米連續波雷射時,可以透過高速同調斷層掃描觀察到細胞內部物質流失的過程。zh_TW
dc.description.abstractThe use of a high-resolution optical coherence tomography (OCT) system with the operation wavelength around 800 nm to scan SCC4 cancer cells under different laser illumination conditions is demonstrated. The cancer cells are incubated with Au nanorings (NRIs), which are either linked with the photosensitizer, AlPcS, or not, for them to be up-taken by the cells. Two Au NRI samples of different geometries for inducing localized surface plasmon (LSP) resonance around 1310 and 1064 nm are used. Four different lasers are utilized for illuminating the cells under OCT scanning, including 1310-nm continuous (cw) laser, 1064-nm cw laser, 1064-nm femtosecond (fs) laser, and 660-nm cw laser. The 1310- and 1064-nm cw lasers mainly produce the photothermal effect through the LSP resonance of Au NRIs for damaging the observed cells. Besides the photothermal effect, the 1064-nm fs laser can produce strong two-photon absorption through the assistance of the LSP resonance of Au NRI for exciting AlPcS to effectively generate singlet oxygen and damage the observed cells. The 660-nm laser can excite AlPcS through single-photon absorption for generating singlet oxygen and damaging the observed cells. With the strong photothermal effect, the observed cells can be killed through the process of necrosis. Through the generation of singlet oxygen, the cell membrane can be preserved and the interior substances are solidified to become a hard body of strong scattering. In this situation, the cells are killed through the apoptosis process. Illuminated by the 660-nm cw laser, a process of interior substance escape is observed through high-speed OCT scanning.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:45:15Z (GMT). No. of bitstreams: 1
ntu-105-R02941064-1.pdf: 2635734 bytes, checksum: a8429a413a40e6d4eb280439e99bbab4 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 II
中文摘要 III
Abstract IV
Content V
Chapter 1 Introduction 1
1.1 Optical coherence tomography 1
1.2 Theory of optical coherence tomography 2
1.3 Fourier-domain optical coherence tomography 7
1.3.1 Spectral-domain optical coherence tomography 8
1.3.2 Swept-source optical coherence tomography 10
1.4 Functional imaging of OCT 12
1.4.1 Optical Doppler tomography 12
1.4.2 Polarization-sensitive OCT (PSOCT) 13
1.4.3 Photothermal OCT 14
1.4.4 Spectroscopic OCT 16
1.5 Using metal nanoparticles as contrast agent in OCT 17
1.6 Photothermal therapy 19
1.7 Photodynamic therapy 21
1.8 The pathways of cell death 24
1.9 Research motivations 25
1.10 Thesis structure 26
Chapter 2 Optical Setup and Sample Preparation 35
2.1 Optical coherence tomography 35
2.2 Au nanoring fabrication 36
Chapter 3 Observation of the Death Process of Cancer Cell with Optical Coherence Tomography 44
3.1 Scanning results with the illumination of 1310-nm continuous laser 44
3.2 Scanning results with the illumination of 1064-nm continuous laser 47
3.3 Scanning results with the illumination of 1064-nm femtosecond laser 50
3.4 Scanning results with the illumination of 660-nm continuous laser 53
Chapter 4 Discussions 69
Chapter 5 Conclusions 73
References 75
dc.language.isoen
dc.subject癌細胞zh_TW
dc.subject光學同調斷層掃描zh_TW
dc.subject癌細胞zh_TW
dc.subject滅活過程zh_TW
dc.subject光學同調斷層掃描zh_TW
dc.subject滅活過程zh_TW
dc.subjectCell Death Processen
dc.subjectOptical Coherence Tomographyen
dc.subjectCell Death Processen
dc.subjectOptical Coherence Tomographyen
dc.title以光學同調斷層掃描觀察癌細胞滅活過程zh_TW
dc.titleObservation of the Death Process of Cancer Cell with Optical Coherence Tomographyen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉,蔡孟燦,孫家偉
dc.subject.keyword滅活過程,癌細胞,光學同調斷層掃描,zh_TW
dc.subject.keywordCell Death Process,Optical Coherence Tomography,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201601251
dc.rights.note有償授權
dc.date.accepted2016-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-105-1.pdf
  Restricted Access
2.57 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved