Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50524
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉進賢
dc.contributor.authorDing-En Yangen
dc.contributor.author楊定恩zh_TW
dc.date.accessioned2021-06-15T12:44:31Z-
dc.date.available2016-08-02
dc.date.copyright2016-08-02
dc.date.issued2016
dc.date.submitted2016-07-25
dc.identifier.citation[1] Trefftz, E. : “Ein Gegenstuck zum Ritzschen Verfahren”, in Proceedings 2nd International Congress of Applied mechanics, Zurich, pp.131-137,1926.
[2] Lesnic D, Elliott L, Ingham DB. The boundary element solution of the Laplace and biharmonic equations subjected to noisy boundary data. Int J Num Meth Eng 1998.
[3] Jin B. A meshless method for the Laplace and biharmonic equations subjected to noisy boundary data. CMES: Compu Model Eng Sci 2004.
[4] Reutskiy SY. The method of fundamental solutions for eigenproblems with Laplace and biharmonic operators. CMC: Compu Mater Contin 2005.
[5] Melnikov YA, Melnikov MY. Modified potentials as a tool for computing Green's functions in continuum mechanics. CMES: Compu Model Eng Sci 2001.
[6] Tsai, C. C.; Lin, Y. C.; Young, D. L.; Atluri, S. N. : Investigations on the accuracy and condition number for the method of fundamental solutions. CMES: Computer Modeling in Engineering & Sciences, vol. 16, pp. 103-114.
[7] Chen J. T.; Wu C. S.; Lee Y. T.; Chen K. H. : On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Compu. Math. Applic., vol. 53, pp. 851-879.
[8] JinWG, Cheung YK, Zienckiewicz OC. Trefftz method for Kirchhoff plate bending problems. Int J Num Meth Eng 1993.
[9] Jin WG, Cheung YK. Trefftz method applied to a moderately thick plate. Int J Num Meth Eng 1999.
[10] Herrera I, Diaz M. Indirect methods of collocation: Trefftz-Herrera collocation. Numer Meth Partial Diff Eq 1999.
[11] Herrera I, Yates R, Diaz M. General theory of domain decomposition: indirect methods. Numer Meth Partial Diff Eq 2002.
[12] Diaz M, Herrera I. TH-collocation for the biharmonic equation. Adv Eng Software 2005.
[13] Herrera I, Yates R, Rubio E. Collocation methods: more efficient procedures for applying collocation. Adv Eng Software 2007.
[14] Liu, C.-S. : A modified Trefftz method for two-dimensional Laplace equation considering the domain’s characteristic length. CMES:Computer Modeling in Engineering & Sciences, vol. 21, pp. 53-65.
[15] 李茂華,“使用修正型配點Trefftz方法在多連通平面區域計算雙調和方程式正算和反算問題”,國立海洋大學,機械與機電工程學系碩士論文,民國98年
[16] 郭仲倫,“二維多連通區域的拉普拉斯內外域問題研究”,國立海洋大學,機械與機電工程學系碩士論文,民國96年
[17] 林軒正,“以修正型配點Trefftz 方法來計算拉普拉斯的柯西反算問題”,國立海洋大學,機械與機電工程學系碩士論文,民國97年
[18] Kubo, S. : “Inverse Problem Related to The Mechanics and Fracture of Solid Structure”, JSME International Journal, vol. 31, pp.157-166, 1988
[19] Jacques Hadamard (1902): Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 49--52.
[20] Little RW. Elasticity.New Jersey: Prentice-Hall; 1973.
[21] Liu CS. Optimally scaled vector regularization method to solve ill-posed linear problems. Applied Mathematics and Computation 2012;218:10602–16.
[22] Zeb A, Elliott L, Ingham DB, Lesnic D. A comparison of different methods to solve inverse biharmonic boundary value problems. International Journal for Numerical Methods in Engineering 1999;45:1791–806.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50524-
dc.description.abstract本文我們使用多尺度多方向Trefffz Method數值方法求解三維biharmonic方程問題以及Cauchy反算問題。過去對於二維biharmonic 方程問題已經提出許多數值方法求解,然而對於三維問題並沒有一個有效的數值方法去求解。這裡我們利用Trefftz Method求解二維並利用此方法延伸求解三維上的問題,甚至比傳統邊界無網格法更有效且簡單。Cauchy反算問題擁有高度病態的問題,我們提出新的後處理(post-condition)線性系統來克服高度病態問題。然後,在本文後半段分別有二維和三維的算例,這些算例我們均使用Dirichlet邊界條件和Neumann邊界條件,之後利用配點法來求解正算以及Cauchy反算問題,並以Matlab程式語言和Mathematica軟體來進行數值分析模擬。zh_TW
dc.description.abstractIn this thesis, we develope a multi-scale and multi-directional Trefffz Method numerical method for three-dimensional biharmonic equation Cauchy problem and the inverse problem. In the past, the two-dimensional biharmonic equation has arisen many numerical methods, however, there is still not an efficient numerical method to solve the three-dimensional problem.Here we use Trefftz method for solving the two-dimensional problem and extend this method to solve the problem the three-dimensional.The proposed approach is even moreeffective and simple than the conventient boundary type meshless method. Inverse problem Cauchy problem has a highly morbid, we propose a new post-processing (post-condition) linear system problems to overcome the height of the sick.Then, in the second half of this thesis are respectively two and three dimensional numerical examples, in these examples we use the Dirichlet boundary conditions and Neumann boundary conditions, after which collocation method for solving direct problem and Cauchy inverse problem, and use Matlab programming language and Mathematica software to numerical analysis and simulation.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:44:31Z (GMT). No. of bitstreams: 1
ntu-105-R03521214-1.pdf: 4561123 bytes, checksum: 91e252ff2ed2ff262f30c4c927b17882 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
圖目錄 vii
表目錄 xiii
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機與目的 2
1.4 本文架構 3
第二章 基礎理論 4
2.1 正反算定義 4
2.2 Cauchy反算問題 5
2.3 邊界條件的類型 6
2.4 數值方法解線性方程 6
2.4.1 最速下降法 6
2.4.2 共軛梯度法. 7
2.5 誤差估測 7
第三章 二維Biharmonic Equation 9
3.1 級數解 9
3.2 配點法 12
3.3 數值算例 16
3.3.1 範例一 16
3.3.2 範例二 16
3.3.3 範例三 17
3.3.4 範例四 18
第四章 三維Biharmonic Equation 20
4.1 級數解 20
4.2 配點法 22
4.3 數值算例 23
4.3.1 範例一正算情況 23
4.3.2 範例一反算情況 24
4.3.3 範例二正算情況 25
4.3.4 範例二反算情況 25
4.3.5 範例三正算情況 26
4.3.6 範例三反算情況 26
第五章 結論與未來展望 28
5.1 結論 28
5.2 未來展望 28
REFERENCE 29
附錄一 32
附錄二 35
dc.language.isozh-TW
dc.subject多方向zh_TW
dc.subjectTrefffz Methodzh_TW
dc.subject多尺度zh_TW
dc.subjectBiharmonic equationzh_TW
dc.subjectCauchy反算問題zh_TW
dc.subjectTrefffz Methodzh_TW
dc.subject多尺度zh_TW
dc.subject多方向zh_TW
dc.subjectBiharmonic equationzh_TW
dc.subjectCauchy反算問題zh_TW
dc.subjectBiharmonic equationen
dc.subjectMiltiple scaleen
dc.subjectMiltiple directionen
dc.subjectBiharmonic equationen
dc.subjectCauchy inverse problemen
dc.subjectMiltiple scaleen
dc.subjectMiltiple directionen
dc.subjectTrefffz Methoden
dc.subjectCauchy inverse problemen
dc.subjectTrefffz Methoden
dc.title使用多尺度多方向Trefftz method求解三維Biharmonic equation內域問題之研究zh_TW
dc.titleSolving 3D Biharmonic Equation Interior Problem by Using Multiple Scale/Direction Trefftz Methoden
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳永為,郭仲倫
dc.subject.keywordTrefffz Method,多尺度,多方向,Biharmonic equation,Cauchy反算問題,zh_TW
dc.subject.keywordTrefffz Method,Miltiple scale,Miltiple direction,Biharmonic equation,Cauchy inverse problem,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201601301
dc.rights.note有償授權
dc.date.accepted2016-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved