請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50524完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉進賢 | |
| dc.contributor.author | Ding-En Yang | en |
| dc.contributor.author | 楊定恩 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:44:31Z | - |
| dc.date.available | 2016-08-02 | |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-25 | |
| dc.identifier.citation | [1] Trefftz, E. : “Ein Gegenstuck zum Ritzschen Verfahren”, in Proceedings 2nd International Congress of Applied mechanics, Zurich, pp.131-137,1926.
[2] Lesnic D, Elliott L, Ingham DB. The boundary element solution of the Laplace and biharmonic equations subjected to noisy boundary data. Int J Num Meth Eng 1998. [3] Jin B. A meshless method for the Laplace and biharmonic equations subjected to noisy boundary data. CMES: Compu Model Eng Sci 2004. [4] Reutskiy SY. The method of fundamental solutions for eigenproblems with Laplace and biharmonic operators. CMC: Compu Mater Contin 2005. [5] Melnikov YA, Melnikov MY. Modified potentials as a tool for computing Green's functions in continuum mechanics. CMES: Compu Model Eng Sci 2001. [6] Tsai, C. C.; Lin, Y. C.; Young, D. L.; Atluri, S. N. : Investigations on the accuracy and condition number for the method of fundamental solutions. CMES: Computer Modeling in Engineering & Sciences, vol. 16, pp. 103-114. [7] Chen J. T.; Wu C. S.; Lee Y. T.; Chen K. H. : On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Compu. Math. Applic., vol. 53, pp. 851-879. [8] JinWG, Cheung YK, Zienckiewicz OC. Trefftz method for Kirchhoff plate bending problems. Int J Num Meth Eng 1993. [9] Jin WG, Cheung YK. Trefftz method applied to a moderately thick plate. Int J Num Meth Eng 1999. [10] Herrera I, Diaz M. Indirect methods of collocation: Trefftz-Herrera collocation. Numer Meth Partial Diff Eq 1999. [11] Herrera I, Yates R, Diaz M. General theory of domain decomposition: indirect methods. Numer Meth Partial Diff Eq 2002. [12] Diaz M, Herrera I. TH-collocation for the biharmonic equation. Adv Eng Software 2005. [13] Herrera I, Yates R, Rubio E. Collocation methods: more efficient procedures for applying collocation. Adv Eng Software 2007. [14] Liu, C.-S. : A modified Trefftz method for two-dimensional Laplace equation considering the domain’s characteristic length. CMES:Computer Modeling in Engineering & Sciences, vol. 21, pp. 53-65. [15] 李茂華,“使用修正型配點Trefftz方法在多連通平面區域計算雙調和方程式正算和反算問題”,國立海洋大學,機械與機電工程學系碩士論文,民國98年 [16] 郭仲倫,“二維多連通區域的拉普拉斯內外域問題研究”,國立海洋大學,機械與機電工程學系碩士論文,民國96年 [17] 林軒正,“以修正型配點Trefftz 方法來計算拉普拉斯的柯西反算問題”,國立海洋大學,機械與機電工程學系碩士論文,民國97年 [18] Kubo, S. : “Inverse Problem Related to The Mechanics and Fracture of Solid Structure”, JSME International Journal, vol. 31, pp.157-166, 1988 [19] Jacques Hadamard (1902): Sur les problèmes aux dérivées partielles et leur signification physique. Princeton University Bulletin, 49--52. [20] Little RW. Elasticity.New Jersey: Prentice-Hall; 1973. [21] Liu CS. Optimally scaled vector regularization method to solve ill-posed linear problems. Applied Mathematics and Computation 2012;218:10602–16. [22] Zeb A, Elliott L, Ingham DB, Lesnic D. A comparison of different methods to solve inverse biharmonic boundary value problems. International Journal for Numerical Methods in Engineering 1999;45:1791–806. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50524 | - |
| dc.description.abstract | 本文我們使用多尺度多方向Trefffz Method數值方法求解三維biharmonic方程問題以及Cauchy反算問題。過去對於二維biharmonic 方程問題已經提出許多數值方法求解,然而對於三維問題並沒有一個有效的數值方法去求解。這裡我們利用Trefftz Method求解二維並利用此方法延伸求解三維上的問題,甚至比傳統邊界無網格法更有效且簡單。Cauchy反算問題擁有高度病態的問題,我們提出新的後處理(post-condition)線性系統來克服高度病態問題。然後,在本文後半段分別有二維和三維的算例,這些算例我們均使用Dirichlet邊界條件和Neumann邊界條件,之後利用配點法來求解正算以及Cauchy反算問題,並以Matlab程式語言和Mathematica軟體來進行數值分析模擬。 | zh_TW |
| dc.description.abstract | In this thesis, we develope a multi-scale and multi-directional Trefffz Method numerical method for three-dimensional biharmonic equation Cauchy problem and the inverse problem. In the past, the two-dimensional biharmonic equation has arisen many numerical methods, however, there is still not an efficient numerical method to solve the three-dimensional problem.Here we use Trefftz method for solving the two-dimensional problem and extend this method to solve the problem the three-dimensional.The proposed approach is even moreeffective and simple than the conventient boundary type meshless method. Inverse problem Cauchy problem has a highly morbid, we propose a new post-processing (post-condition) linear system problems to overcome the height of the sick.Then, in the second half of this thesis are respectively two and three dimensional numerical examples, in these examples we use the Dirichlet boundary conditions and Neumann boundary conditions, after which collocation method for solving direct problem and Cauchy inverse problem, and use Matlab programming language and Mathematica software to numerical analysis and simulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:44:31Z (GMT). No. of bitstreams: 1 ntu-105-R03521214-1.pdf: 4561123 bytes, checksum: 91e252ff2ed2ff262f30c4c927b17882 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv 圖目錄 vii 表目錄 xiii 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 1 1.3 研究動機與目的 2 1.4 本文架構 3 第二章 基礎理論 4 2.1 正反算定義 4 2.2 Cauchy反算問題 5 2.3 邊界條件的類型 6 2.4 數值方法解線性方程 6 2.4.1 最速下降法 6 2.4.2 共軛梯度法. 7 2.5 誤差估測 7 第三章 二維Biharmonic Equation 9 3.1 級數解 9 3.2 配點法 12 3.3 數值算例 16 3.3.1 範例一 16 3.3.2 範例二 16 3.3.3 範例三 17 3.3.4 範例四 18 第四章 三維Biharmonic Equation 20 4.1 級數解 20 4.2 配點法 22 4.3 數值算例 23 4.3.1 範例一正算情況 23 4.3.2 範例一反算情況 24 4.3.3 範例二正算情況 25 4.3.4 範例二反算情況 25 4.3.5 範例三正算情況 26 4.3.6 範例三反算情況 26 第五章 結論與未來展望 28 5.1 結論 28 5.2 未來展望 28 REFERENCE 29 附錄一 32 附錄二 35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多方向 | zh_TW |
| dc.subject | Trefffz Method | zh_TW |
| dc.subject | 多尺度 | zh_TW |
| dc.subject | Biharmonic equation | zh_TW |
| dc.subject | Cauchy反算問題 | zh_TW |
| dc.subject | Trefffz Method | zh_TW |
| dc.subject | 多尺度 | zh_TW |
| dc.subject | 多方向 | zh_TW |
| dc.subject | Biharmonic equation | zh_TW |
| dc.subject | Cauchy反算問題 | zh_TW |
| dc.subject | Biharmonic equation | en |
| dc.subject | Miltiple scale | en |
| dc.subject | Miltiple direction | en |
| dc.subject | Biharmonic equation | en |
| dc.subject | Cauchy inverse problem | en |
| dc.subject | Miltiple scale | en |
| dc.subject | Miltiple direction | en |
| dc.subject | Trefffz Method | en |
| dc.subject | Cauchy inverse problem | en |
| dc.subject | Trefffz Method | en |
| dc.title | 使用多尺度多方向Trefftz method求解三維Biharmonic equation內域問題之研究 | zh_TW |
| dc.title | Solving 3D Biharmonic Equation Interior Problem by Using Multiple Scale/Direction Trefftz Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳永為,郭仲倫 | |
| dc.subject.keyword | Trefffz Method,多尺度,多方向,Biharmonic equation,Cauchy反算問題, | zh_TW |
| dc.subject.keyword | Trefffz Method,Miltiple scale,Miltiple direction,Biharmonic equation,Cauchy inverse problem, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU201601301 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
