請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50523完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏家鈺 | |
| dc.contributor.author | Ching-Jen Chen | en |
| dc.contributor.author | 鄭景仁 | zh_TW |
| dc.date.accessioned | 2021-06-15T12:44:28Z | - |
| dc.date.available | 2016-08-02 | |
| dc.date.copyright | 2016-08-02 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-07-25 | |
| dc.identifier.citation | [1] Kadakia, A., Keskar, V., Titushkin, I. A., Djalilian, A., Gemeinhart, R. A., & Cho, M. (2008). Hybrid superporous scaffolds: an application for cornea tissue engineering. Critical Reviews™ in Biomedical Engineering, 36(5-6).
[2] Carlsson, D. J., Li, F., Shimmura, S., & Griffith, M. (2003). Bioengineered corneas: how close are we?. Current opinion in ophthalmology, 14(4), 192-197. [3] Ing JJ, Ing HH, Nelson LR, Hodge DO, Bourne WM. (1998). Ten-year postoperative results of penetrating keratoplasty. Ophthalmology, 105(10):1855–65. [4] Zierhut M, Pleyer U, Thiel HJ, eds. (1994). Immunology of corneal transplantation. Newton, MA: Butterworth-Heinenman. [5] Krachmer JH, Mannis MJ, Holland EJ. (1997). Cornea: fundamentals of cornea and external disease. St. Louis, MO: Mosby [6] Yang, S. F., Leong, K. F., Du, Z. H. & Chua, C. K. (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Engineering, 8(1), 1–11. [7] Bartolo, P. J., Chua, C. K., Almeida, H. A., Chou, S. M. & Lim, A. S. C. (2009) Biomanufacturing for tissue engineering: Present and future trends. Virtual and Physical Prototyping, 4(4), 203–216. [8] Leong, K.F., Cheah, C.M. & Chua, C.K. (2003). Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 24(13), 2363–2378. [9] Chua, C. K., Yeong, W. Y., & Leong, K. F. (2005, September). Rapid prototyping in tissue engineering: a state-of-the-art report. In Proc. 2nd Int. Conf. on Advanced Research in Virtual and Rapid Prototyping (pp. 19-27). [10] Mikos,A. G., Herring, S.W., Ochareon, P., Elisseeff, J., Lu, H. H., Kandel, R., Schoen, F. J.,Toner, M., Mooney,D., Atala, A., Dyke, M. E. V., Kaplan, D. & Vunjak-Novakovic, G. (2006). Engineering ComplexTissues. Tissue Engineering, 12(12), 3307–3339. [11] Chirila TV, Crawford GJ. (1996). A controversial episode in the history of artificial cornea: the first use of poly(methyl methacrylate). Gesnerus 53:236–42. [12] Legeais JM, Renard G, and Anton M. Implant corneen Fr. Patent 2,649,605, 1991, Jan. 18. [13] Legeais JM, Renard G, and Pouliquen Y, Novel biocolonizable intrastromal keratoprosthesis. First year study in human, Invest. Ophthulmol. Vis. Sci., 34(Suppl.), 1367 (1993). [14] Legeais JM, Renard G, Rossi C, Salvodelli M, D’Hermies F, and Pouliquen Y. (1991). Keratoprosthesis: A comparative study of three different microporous polymer and first application in human eyes. Invest. Ophthalmol. Vis. Sci., 32(Suppl.), 778. [15] Legeais JM, Renard G, Thevenin D, Pouliquen Y. (1995). Advances in artificial corneas. Invest Ophthalmol Vis Sci, 36(Suppl):314. [16] Legeais JM, Drubaix I, Mayer F, Savoldelli M, Renard G. (1997). A second generation of biointegrable keratoprosthesis. First human cases. Invest Ophthalmol Vis Sci, 38(Suppl):131. [17] Legeais JM, Renard G. (1998). A second generation of artificial cornea (Biokpro II). Biomaterials 19:1517–22. [18] Caldwell DR. (1997). The soft keratoprosthesis. Trans Am Ophthalmol Soc 95:751–802. [19] Kim HC. (1992). The experimental Seoul-type keratoprosthesis. Korean J Ophthalmol 6:55–61. [20] Lee JH, Choi YS, Choi DG, Kim JY, Kim HY, Chung ES, Wee WR. (1997). Seoul type keratoprosthesis by ab interno scleral suture fixation with amniotic membrane coverage in rabbits. Invest Ophthalmol Vis Sci, 38(Suppl):132. [21] Mester U. (1976). Hornhautprothesen aus weichem Kunststoff-erste Erfahrungen im Tierexperiment. Graefes Arch. Klin. Exp. Ophthalmol., 198, 73-78. [22] Mester U and Krasemann C. (1976). Mikrobiologische Untersuchungen bei experimentellen Keratoprothesen aus hydrophilem Kunststoff. Graefes Arch. Klin. Exp. Ophthalmol., 198, 79-82. [23] Mester, U., Krasemann, C., & Stein, H. J. (1978). Keratoprosthesis with hydrophilic plastic material-Microbiological aspects. Eye & Contact Lens, 4(3), 88-92. [24] Mester, U. (1979). Tierexperimentelle Ergebnisse mit Hydrogel-Keratoprothesen unterschiedlichen Wassergehaltes. Ophthalmologica, 179(1), 62-69. [25] Chee Kai Chua, Kah Fai Leong, Chu Sing Lim (2003). Rapid Prototyping. World Scientific. p. 124. ISBN 978-981-238-117-0. [26] Yen, H. J., Hsu, S. H., Tseng, C. S., Huang, J. P., & Tsai, C. L. (2008). Fabrication of precision scaffolds using liquid-frozen deposition manufacturing for cartilage tissue engineering. Tissue Engineering Part A 15(5), 965-975. [27] Warnke, Patrick H., et al. (2008) Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue engineering part c: Methods 15(2), 115-124. [28] Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R. (2010) Three-dimensional photopatterning of hydrogels using stereolithography for longterm cell encapsulation. Lab Chip 10:2062–70. [29] Okamoto, Tadashi, Tomohiro Suzuki, and Nobuko Yamamoto. (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nature biotechnology 18(4), 438-441. [30] Roda, A., Guardigli, M., Russo, C., Pasini, P., & Baraldini, M. (2000). Protein microdeposition using a conventional ink-jet printer. Biotechniques, 28(3), 492-496. [31] Xu, T., Jin, J., Gregory, C., Hickman, J. J., & Boland, T. (2005). Inkjet printing of viable mammalian cells. Biomaterials, 26(1), 93-99. [32] Roth, E. A., Xu, T., Das, M., Gregory, C., Hickman, J. J., & Boland, T. (2004). Inkjet printing for high-throughput cell patterning. Biomaterials, 25(17), 3707-3715. [33] Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology, 32(8), 773-785. [34] Nakamura, M., Iwanaga, S., Henmi, C., Arai, K., & Nishiyama, Y. (2010). Biomatrices and biomaterials for future developments of bioprinting and biofabrication. Biofabrication, 2(1), 014110. [35] Skardal, A., Zhang, J., & Prestwich, G. D. (2010). Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials, 31(24), 6173-6181. [36] Xu, F., Celli, J., Rizvi, I., Moon, S., Hasan, T., & Demirci, U. (2011). A three‐dimensional in vitro ovarian cancer coculture model using a high‐throughput cell patterning platform. Biotechnology journal, 6(2), 204-212. [37] Malda, J., Visser, J., Melchels, F. P., Jüngst, T., Hennink, W. E., Dhert, W. J. & Hutmacher, D. W. (2013). 25th anniversary article: engineering hydrogels for biofabrication. Advanced Materials, 25(36), 5011-5028. [38] Hopp, B., Smausz, T., Kresz, N., Barna, N., Bor, Z., Kolozsvári, L. & Nógrádi, A. (2005). Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Engineering, 11(11-12), 1817-1823. [39] Jones, N. (2012). Science in three dimensions: the print revolution. Nature, 487(7405), 22-23. [40] Melchels, F. P., Domingos, M. A., Klein, T. J., Malda, J., Bartolo, P. J., & Hutmacher, D. W. (2012). Additive manufacturing of tissues and organs. Progress in Polymer Science, 37(8), 1079-1104. [41] Saunders, R. E., Gough, J. E., & Derby, B. (2008). Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials, 29(2), 193-203. [42] Khalil, S., & Sun, W. (2009). Bioprinting endothelial cells with alginate for 3D tissue constructs. Journal of biomechanical engineering, 131(11), 111002. [43] Fedorovich, N. E., Schuurman, W., Wijnberg, H. M., Prins, H. J., van Weeren, P. R., Malda, J. & Dhert, W. J. (2011). Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Engineering Part C: Methods, 18(1), 33-44. [44] Grandolfo, M., d'Andrea, P., Paoletti, S., Martina, M., Silvestrini, G., Bonucci, E., & Vittur, F. (1993). Culture and differentiation of chondrocytes entrapped in alginate gels. Calcified tissue international, 52(1), 42-48. [45] Hauselmann, H. J., Fernandes, R. J., Mok, S. S., Schmid, T. M., Block, J. A., Aydelotte, M. B. & Thonar, E. J. (1994). Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. Journal of cell science, 107(1), 17-27. [46] Suh, J. K. F., & Matthew, H. W. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review.Biomaterials, 21(24), 2589-2598. [47] Sims, D. C., Butler, P. E., Casanova, R., Lee, B. T., Randolph, M. A., Lee, W. A. & Yaremchuk, M. J. (1996). Injectable cartilage using polyethylene oxide polymer substrates. Plastic and reconstructive surgery, 98(5), 843-850. [48] Ibusuki, S., Iwamoto, Y., & Matsuda, T. (2003). System-engineered cartilage using poly (N-isopropylacrylamide)-grafted gelatin as in situ-formable scaffold: in vivo performance. Tissue engineering, 9(6), 1133-1142. [49] Augst, A. D., Kong, H. J., & Mooney, D. J. (2006). Alginate hydrogels as biomaterials. Macromolecular bioscience, 6(8), 623-633. [50] Fedorovich, N. E., De Wijn, J. R., Verbout, A. J., Alblas, J., & Dhert, W. J. (2008). Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Engineering Part A, 14(1), 127-133. [51] Fedorovich, N. E., Swennen, I., Girones, J., Moroni, L., Van Blitterswijk, C. A., Schacht, E., Alblas J & Dhert, W. J. (2009). Evaluation of photocrosslinked lutrol hydrogel for tissue printing applications. Biomacromolecules, 10(7), 1689-1696. [52] Liu, S., & Li, L. (2015). Multiple phase transition and scaling law for poly (ethylene oxide)–poly (propylene oxide)–poly (ethylene oxide) triblock copolymer in aqueous solution. ACS applied materials & interfaces, 7(4), 2688-2697. [53] Wanka, G., Hoffmann, H., & Ulbricht, W. (1990). The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution. Colloid and Polymer Science, 268(2), 101-117. [54] Wanka, G., Hoffmann, H., & Ulbricht, W. (1994). Phase diagrams and aggregation behavior of poly (oxyethylene)-poly (oxypropylene)-poly (oxyethylene) triblock copolymers in aqueous solutions. Macromolecules,27(15), 4145-4159. [55] Lam, Y. M., & Goldbeck-Wood, G. (2003). Mesoscale simulation of block copolymers in aqueous solution: parameterisation, micelle growth kinetics and the effect of temperature and concentration morphology. Polymer, 44(12), 3593-3605. [56] Peppas, N. A., Bures, P., Leobandung, W., & Ichikawa, H. (2000). Hydrogels in pharmaceutical formulations. European journal of pharmaceutics and biopharmaceutics, 50(1), 27-46. [57] Gandhi, A., Paul, A., Sen, S. O., & Sen, K. K. (2015). Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. asian journal of pharmaceutical sciences, 10(2), 99-107. [58] Kweon, H., Yoo, M. K., Lee, J. H., Wee, W. R., Han, Y. G., Lee, K. G., & Cho, C. S. (2003). Preparation of a novel poloxamer hydrogel. Journal of applied polymer science, 88(11), 2670-2676. [59] Jenkins, A. D., Kratochvil, P., Stepto, R. F. T., & Suter, U. W. (1996). Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure and applied chemistry, 68(12), 2287-2311. [60] Mashige, K. P. (2013). A review of corneal diameter, curvature and thickness values and influencing factors*. African Vision and Eye Health, 72(4), 185-194. [61] Koulikovska, M., Rafat, M., Petrovski, G., Veréb, Z., Akhtar, S., Fagerholm, P., & Lagali, N. (2015). Enhanced regeneration of corneal tissue via a bioengineered collagen construct implanted by a nondisruptive surgical technique. Tissue Engineering Part A, 21(5-6), 1116-1130. [62] Hecht, E. (1987). Optics 2nd edition. Optics 2nd edition by Eugene Hecht Reading, MA: Addison-Wesley Publishing Company, 1987, 1. [63] Wendt, D., Jakob, M., & Martin, I. (2005). Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. Journal of bioscience and bioengineering, 100(5), 489-494. [64] Schneider, A., Francius, G., Obeid, R., Schwinté, P., Hemmerlé, J., Frisch, B., ... & Picart, C. (2006). Polyelectrolyte multilayers with a tunable Young's modulus: influence of film stiffness on cell adhesion. Langmuir, 22(3), 1193-1200. [65] Peppas, N. A. (2004). Hydrogels. Biomaterials science: An introduction to materials in medicine, 2, 100-107. [66] Censi, R., Schuurman, W., Malda, J., Di Dato, G., Burgisser, P. E., Dhert, W. J., ... & Hennink, W. E. (2011). A Printable Photopolymerizable Thermosensitive p (HPMAm‐lactate)‐PEG Hydrogel for Tissue Engineering.Advanced Functional Materials, 21(10), 1833-1842. [67] Hamilton, K. E., & Pye, D. C. (2008). Young’s modulus in normal corneas and the effect on applanation tonometry. Optometry & Vision Science, 85(6), 445-450. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50523 | - |
| dc.description.abstract | 角膜是位於眼球最外圍一種無血管且高度透明之組織,但角膜因受傷,感染,或病變而造成白化或是透光度下降問題,全球有超過上千萬人因角膜問題而失明。鑒於由全球捐贈者提供的角膜數量不足,以及接受角膜移植手術後病患可能產生的排斥現象,人工角膜成為目前具有極高潛力的取代方案。積層製造可配合客製化生產組織結構,提供了可替代天然組織的成品。本研究藉此提出以積層製造之技術,透過列印的技術製造人工角膜。利用積層製造的優點,可製作出客製化形狀的人工角膜。本研究針對利用積層製造方式製造角膜的製程進行設計及評估,使用了COMSOL軟體模擬製程中角膜的形變;以及利用3D列印時,配合精確的溫度及壓力控制,成功製造角膜結構及對可交聯之具有丙烯酸官能基的高分子泊洛沙姆水膠 (P407DA) 進行光固化。透過改變環境溫度於15°C與添加支撐氣壓,以此積層製造方法所製造出的人工眼角膜,具有光滑清澈的表面,且於可見光波段具有82%以上的透光度。 | zh_TW |
| dc.description.abstract | The cornea is the outermost part of the eye and a highly transparent organization without vessels. However, due to injury, infection or disease, the cornea can cause bleaching or transmittance decline. In the worldwide, more than millions people are blind due to corneal problems. The global need for artificial cornea is driven by both the population that cannot tolerate donor corneas and the severe shortage of donor corneas. Additive manufacturing provides the opportunity to produce substitutes of the native tissues, and, in turn, to produce customized tissue constructs. This study aims to analyze and design various additive manufacturing processes for artificial cornea. COMSOL simulation presents the deformation of the corneal structure during fabrication. Moreover, 3D printing enables accurate temperature and pressure control in construction on corneal structure during dispensing and photo-curing of diacrylate-terminated Poloxamer 407 (P407DA) hydrogel. With the precise control at ambient temperature (15°C) and additional air pressure support (45 Pa), fabricated corneas can be formed with a smooth surface and light transmission all over 82% in the range of visible light by additive manufacturing process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T12:44:28Z (GMT). No. of bitstreams: 1 ntu-105-R03522817-1.pdf: 5026150 bytes, checksum: e25d4027612ac0f26ac365d162e722dc (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
ACKNOWLEDGEMENTS i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi NOMENCLATURE xii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 2 1.2.1 Artificial corneas 2 1.2.2 Additive Manufacturing and 3D Printers 4 1.2.3 Components of 3D Printer 9 1.3 Outline 12 1.4 Contributions 13 Chapter 2 Properties and Materials for Fabrication 14 2.1 Hydrogel Properties for Fabrication 14 2.2 Poloxamer 407 Hydrogel 16 2.2.1 Hydrogels 16 2.2.2 Poloxamers 18 2.2.3 Poloxamer 407 (Pluronic F-127) 20 2.3 Synthesis of Diacrylate-Terminated Ploxamer 407 by Nucleophilic Acyl Substitution 22 2.3.1 Nucleophilic Acyl Substitution 22 2.3.2 Synthesis of P407DA 24 2.4 Preparation and Characterizations of P407DA Solution 25 2.4.1 The Gelation Behavior of Diacrylate-terminated Poloxamer 407 and Poloxamer 407 25 2.4.2 Rheological Behavior of 20% P407DA Aqueous Solution 26 2.4.3 Photo-polymerization and Interpenetrating Networks (IPN) 29 Chapter 3 The Self-developed 3D printing system 31 3.1 Special Components of 3D Printing System 32 3.2 Basic Elements of 3D Printing System 34 3.2.1 The Servo Platform 35 3.2.2 Arduino Mega 2560 38 3.2.3 CAD software and Visual Basic 42 3.2.4 FDM Extruder (Supplementary) 45 Chapter 4 Simulation with COMSOL Multiphysics 46 4.1 Corneal Parameters & Hierarchical Structures 46 4.2 Model Simulation with Changeful Viscosity 48 4.2.1 CFD Module and Model Geometry 48 4.2.2 Changeful Viscosity 52 4.3 Simulation Result 55 4.3.1 Deformation of the Original Structure and Two Other Simulations 55 4.3.2 Deformation of Original Structure with Pressure Support 58 4.3.3 Deformation of Heightened Structure 59 Chapter 5 Additive Manufacturing Process Design & Fabricated Artificial Corneas 62 5.1 Design of the Additive Manufacturing Process for Artificial Cornea 64 5.2 3D Printing Setup 65 5.3 Fabrication of Corneal Constructs with Designed Additive Manufacturing Process Parameters 66 5.4 Optical Analysis of Printed Artificial Corneas 69 5.5 Mechanical Properties of Photo-polymerized Hydrogels 70 5.5.1 Swelling ratio of Photo-polymerized Hydrogels 71 5.5.2 Mechanical Properties of Photo-polymerized Hydrogels 72 Chapter 6 Conclusion and Future Work 74 6.1 Conclusion 74 6.2 Future Work 75 REFERENCE 76 | |
| dc.language.iso | en | |
| dc.subject | 具有丙烯酸官能基的高分子-泊洛沙姆水膠 | zh_TW |
| dc.subject | 光固化 | zh_TW |
| dc.subject | 3D 列印 | zh_TW |
| dc.subject | 人工角膜 | zh_TW |
| dc.subject | 積層製造 | zh_TW |
| dc.subject | 具有丙烯酸官能基的高分子-泊洛沙姆水膠 | zh_TW |
| dc.subject | 光固化 | zh_TW |
| dc.subject | 3D 列印 | zh_TW |
| dc.subject | 人工角膜 | zh_TW |
| dc.subject | 積層製造 | zh_TW |
| dc.subject | artificial cornea | en |
| dc.subject | Poloxamer | en |
| dc.subject | photo-curing | en |
| dc.subject | 3D printing | en |
| dc.subject | artificial cornea | en |
| dc.subject | Additive manufacturing | en |
| dc.subject | Additive manufacturing | en |
| dc.subject | 3D printing | en |
| dc.subject | Poloxamer | en |
| dc.subject | photo-curing | en |
| dc.title | 人工角膜積層製造方法分析與設計 | zh_TW |
| dc.title | Analysis and Design of the Additive Manufacturing Process for Artificial Cornea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 104-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴子安,王一中,鍾添東 | |
| dc.subject.keyword | 積層製造,人工角膜,3D 列印,光固化,具有丙烯酸官能基的高分子-泊洛沙姆水膠, | zh_TW |
| dc.subject.keyword | Additive manufacturing,artificial cornea,3D printing,photo-curing,Poloxamer, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201601019 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 4.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
