Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳勁吾(Chin-Wu Chen)
dc.contributor.authorRuo-Shan Liuen
dc.contributor.author劉若珊zh_TW
dc.date.accessioned2021-06-15T12:42:42Z-
dc.date.available2018-08-03
dc.date.copyright2016-08-03
dc.date.issued2016
dc.date.submitted2016-07-27
dc.identifier.citationReferences
Aki, K. (1957), Space and time spectra of stationary stochastic waves with special reference to microtremors., Bull. Earthquake Res. Inst. Tokyo Univ,(35), 415-456.
Asten, M. W. (2006), On bias and noise in passive seismic data from finite circular array data processed using SPAC methods, GEOPHYSICS, 71(6), V153-V162, doi:doi:10.1190/1.2345054.
Avendonk, H. J. A. V., H. Kuo-Chen, K. D. McIntosh, L. L. Lavier, D. A. Okaya, F. T. Wu, C. Y. Wang, C. S. Lee, and C. S. Liu (2014), Deep crustal structure of an arc-continent collision constraints from seismic traveltimes in central Taiwan and the Philippine Sea, Journal of Geophysical Research, 119, doi:10.1002/2014JB011327.
Bensen, G. D., M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang (2007), Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophysical Journal International, 169(3), 1239-1260, doi:10.1111/j.1365-246X.2007.03374.x.
Campillo, M., and A. Paul (2003), Long-range correlations in the diffuse seismic coda, Science, 299(5606), 547-549, doi:10.1126/science.1078551.
Cessaro, R. K. (1994), Sources of primary and secondary microseisms, Bulletin of the Seismological Society of America 84(1), 142-148.
Chang, C. P., J. Angelier, C. Y. Huang, and C. S. Liu (2002), Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision, Geological Magazine, 138(06), doi:10.1017/s0016756801005970.
Chen, Y.-N., Y. Gung, S.-H. You, S.-H. Hung, L.-Y. Chiao, T.-Y. Huang, Y.-L. Chen, W.-T. Liang, and S. Jan (2011), Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM, Geophysical Research Letters, 38(4), n/a-n/a, doi:10.1029/2010gl046290.
Chiao, L.-Y., Y.-N. Chen, and Y. Gung (2014), Constructing empirical resolution diagnostics for kriging and minimum curvature gridding, Journal of Geophysical Research: Solid Earth, 119(5), 3939-3954, doi:10.1002/2013jb010364.
Chiao, L.-Y., and B.-Y. Kuo (2001), Multiscale seismic tomography, Geophys. J. Int., 145(2), 517-527, doi:10.1046/j.0956-540x.2001.01403.x.
Chiao, L.-Y., J.-R. Lin, and Y.-C. Gung (2006), Crustal magnetization equivalent source model of Mars constructed from a hierarchical multiresolution inversion of the Mars Global Surveyor data, Journal of Geophysical Research, 111(E12), doi:10.1029/2006je002725.
Deschamps, A., P. Monie, S. Lallemand, S.-K. Hsu, and K. Y. Yeh (2000), Evidence for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate, Earth and Planetary Science Letters, 179, 503-516.
Draganov, D., K. Wapenaar, W. Mulder, J. Singer, and A. Verdel (2007), Retrieval of reflections from seismic background-noise measurements, Geophysical Research Letters, 34(4), doi:10.1029/2006gl028735.
Eakin, D. H., K. D. McIntosh, H. J. A. Van Avendonk, and L. Lavier (2015), New geophysical constraints on a failed subduction initiation: The structure and potential evolution of the Gagua Ridge and Huatung Basin, Geochemistry, Geophysics, Geosystems, 16(2), 380-400, doi:10.1002/2014gc005548.
Gu, Y. J., C. Dublanko, A. Lerner-Lam, K. Brzak, and M. Steckler (2007), Probing the sources of ambient seismic noise near the coasts of southern Italy, Geophysical Research Letters, 34(22), doi:10.1029/2007gl031967.
Hadziioannou, C. e., E. Larose, O. Coutant, P. Roux, and M. Campillo (2009), Stability of Monitoring Weak Changes in Multiply Scattering Media with Ambient Noise Correlation: Laboratory Experiments, J. Acoust. Soc. Am., 125, 3688-3695.
Huang, T.-Y., Y. Gung, B.-Y. Kuo, L.-Y. Chiao, and Y.-N. Chen (2015), Layered deformation in the Taiwan orogen, Science, 349(6249), 720-723, doi:10.1126/science.aab1879.
Isse, T., H. Shiobara, Y. Fukao, K. Mochizuki, T. Kanazawa, H. Sugioka, S. Kodaira, R. Hino, and D. Suetsugu (2004), Rayleigh wave phase velocity measurements across the Philippine sea from a broad-band OBS array, Geophysical Journal International, 158(1), 257-266, doi:10.1111/j.1365-246X.2004.02322.x.
Kuo-Chen, H., F. T. Wu, and S. W. Roecker (2012), Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets, Journal of Geophysical Research, 117(B6), doi:10.1029/2011jb009108.
Kuo, B.-Y., W.-C. Chi, C.-R. Lin, E. T.-Y. Chang, J. Collins, and C.-S. Liu (2009), Two-station measurement of Rayleigh-wave phase velocities for the Huatung basin, the westernmost Philippine Sea, with OBS: implications for regional tectonics, Geophysical Journal International, 179(3), 1859-1869, doi:10.1111/j.1365-246X.2009.04391.x.
Lallemand, S., T. Theunissen, P. Schnürle, C.-S. Lee, C.-S. Liu, and Y. Font (2013), Indentation of the Philippine Sea plate by the Eurasia plate in Taiwan: Details from recent marine seismological experiments, Tectonophysics, 594, 60-79, doi:10.1016/j.tecto.2013.03.020.
Larose, E. (2006), Mesoscopics of ultrasound and seismic waves: application to passive imaging, Annales de Physique, 31((3)), pp.1-126.
Larose, E. (2013), Monitoring stress related velocity variation in concrete with a 2.10^-5 relative resolution using diffuse ultrasound, Acoust. Soc. Am. , 125, 1853-1857.
McNamara, D. E., and R. P. Buland (2004), Ambient Noise Levels in the Continental United States, Bulletin of the Seismological Society of America, 94, 1517–1527, doi:10.1785/012003001.
Okada, H., and K. Suto (2003), The Microtremor Survey Method, doi:doi:10.1190/1.9781560801740.
Paul, A., M. Campillo, L. Margerin, and E. Larose (2005), Empirical synthesis of time-asymmetrical Green functions from the correlation of coda waves, Journal of Geophysical Research, 110(B8), doi:10.1029/2004jb003521.
Roux, P., and W. A. Kuperman (2005), Time reversal of ocean noise, The Journal of the Acoustical Society of America, 117(1), 131, doi:10.1121/1.1834616.
Sabra, K. G., Eric S. Winkel, D. A. Bourgoyne, Brian R. Elbing, Steve L. Ceccio, Marc Perlin, and D. R. Dowling (2007), Using cross-correlations of turbulent flow-induced ambient vibrations to estimate the structural impulse response. Application to structural ealth monitoring.
Sabra, K. G., P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler (2005a), Extracting time-domain Green's function estimates from ambient seismic noise, Geophysical Research Letters, 32(3), doi:Artn L03310 10.1029/2004gl021862.
Schuster, G. T., J. Yu, J. Sheng, and J. Rickett (2004), Interferometric/daylight seismic imaging, Geophysical Journal International, 157(2), 838-852, doi:10.1111/j.1365-246X.2004.02251.x.
Seats, K. J., J. F. Lawrence, and G. A. Prieto (2012), Improved ambient noise correlation functions using Welch's method, Geophysical Journal International, 188(2), 513-523, doi:10.1111/j.1365-246X.2011.05263.x.
Shapiro, N. M., Michel Campillo, Laurent Stehly, and Michael H. Ritzwoller (2005), High-Resolution Surface-Wave Tomography from Ambient Seismic Noise, Science, 307, 1615-1618.
Stehly, L., M. Campillo, and N. M. Shapiro (2006), A study of the seismic noise from its long-range correlation properties, Journal of Geophysical Research, 111(B10), doi:10.1029/2005jb004237.
Sweldens, W. (1994), The Lifting Scheme A Custom-Design Construction of Biorthogonal Wavelets, APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 3(2), 186-200, doi:10.1006/acha.1996.0015.
Teng, L. S. (1990), Geotectonic evolution of late Cenozoic arc-continent collision, Tectonophysics, 183(1-4), 57-76, doi:10.1016/0040-1951(90)90188-E.
Tsai, V. C., and M. P. Moschetti (2010), An explicit relationship between time-domain noise correlation and spatial autocorrelation (SPAC) results, Geophysical Journal International, no-no, doi:10.1111/j.1365-246X.2010.04633.x.
Weaver, R. L., and O. I. Lobkis (2001), Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies, Phys Rev Lett, 87(13), 134301, doi:10.1103/PhysRevLett.87.134301.
Yao, H., G. Xu, L. Zhu, and X. Xiao (2005), Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions, Physics of the Earth and Planetary Interiors, 148(1), 39-54, doi:10.1016/j.pepi.2004.08.006.
You, S. H., Y. Gung, L. Y. Chiao, Y. N. Chen, C. H. Lin, W. T. Liang, and Y. L. Chen (2010), Multiscale Ambient Noise Tomography of Short-Period Rayleigh Waves across Northern Taiwan, Bulletin of the Seismological Society of America, 100(6), 3165-3173, doi:10.1785/0120090394.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/50484-
dc.description.abstract本文利用周遭噪訊法,分析2007-2009年TAIGER計畫在花東海盆布放的海底地震儀的連續紀錄,配合台灣東岸陸上測站數據,分析台灣東部海域噪訊來源和特性,以及台灣東部及花東海盆的岩石圈構造。周遭噪訊法近期已被用來擷取台灣全島測站間的表面波群速度與相速度頻散曲線,並透過多重尺度小波逆推技術,成功求得高解析度的速度層析成像,並進一步透過非均向性隨深度的變化,推論台灣造山分層耦合的變形機制。台灣本島之外,過去對台灣近海海域的類似研究則較為不足。本研究採用相同方法分析花東海盆,提供更完整的台灣及相鄰海域構造解釋。我們首先探討台灣東部及海域噪訊特性。透過長時間噪訊疊加,比較陸上及海上噪訊能量大小及主要頻段差異,分析台灣周邊噪訊的可能來源。並發現在2008年,颱風經過台灣顯著提高了海陸測站的噪訊。另一方面,反演表面波群速度與相速度頻散曲線,求得花東海盆二維相速度及非均向性變化。結果發現,短週期(4-8秒)表面波相速度變化平緩,非均向性不強,但快軸呈南北走向,與磁力條帶方向一致,應代表海盆發育時的擴張方向,另一方面,較長週期(12-20秒)的相速度則呈現顯著空間變化,反映的是地幔岩石圈的特徵。在海盆中央及北呂宋島弧的相速度偏高,非均向性在海盆中央區域增強,且快軸呈西北-東南走向,恰與板塊聚合方向一致,應與軟流圈地幔流場的影響有關。zh_TW
dc.description.abstractWe apply ambient noise analysis to continuous seismic waveform data recorded by ocean-bottom seismometers (OBS) deployed in the Huatung Basin and adjacent regions off the east coast of Taiwan. Taiwan is a young and active orogenic belt resulting from the oblique subduction and collision between the Eurasian Plate and the Philippine Sea Plate. Sitting on the westernmost edge of the Philippine Sea Plate, the Huatung Basin is directly involved in the subduction-collision processes. The structural characteristics of the basin provide important constraints not only on its own history but the tectonic evolution in this complex region. We first analyze the noise signals by stacking cross-correlation functions from station pairs between OBS stations and between land and OBS stations. We find that, unsurprisingly, the noise power of the offshore OBS stations is larger than that of onshore stations. Further, we integrate the OBS data with selected land station data along the east coast, deriving Rayleigh wave Green’s functions from cross-correlation between all available station pairs. We measure phase velocity dispersion at periods from 4 to 20 sec, and invert for 2-D anisotropic phase velocity maps based on a wavelet-based multi-scale inversion scheme. Our results show that, at periods 12-20 s, significant seismic anisotropy is present in the Huatung Basin close to Taiwan’s southeast coast, with fast direction sub-parallel to the direction of convergence. On the other hand, to the north across the Ryukyu trench, anisotropy becomes weaker and the fast direction appears to rotate clockwise toward NW-SE to N-S directions. These characteristics represent the property of the mantle lithosphere of the Huatung Basin, implying for current influence of asthenospheric flow due to currently the PSP plate motion.en
dc.description.provenanceMade available in DSpace on 2021-06-15T12:42:42Z (GMT). No. of bitstreams: 1
ntu-105-R03241304-1.pdf: 6311068 bytes, checksum: 550fb4ff877197015115fece69bb507c (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
致謝 I
摘要 III
ABSTRACT IV
CONTENTS V
LIST OF FIGURES VII
LIST OF TABLE XI
CHAPTER 1 INTRODUCTION 1
1.1 TECTONIC BACKGROUND OF TAIWAN 1
1.2 HUATUNG BASIN 2
1.3 AMBIENT NOISE 4
CHAPTER 2 DATA AND DATA PROCESSING FLOW 8
2.1 DATA 8
2.2 DATA PROCESSING FLOW 11
CHAPTER 3 AMBIENT NOISE CCF TECHNIQUE 15
3.1 METHOD AND THEORY 15
3.1.1 SPAC 15
3.1.2 Coherency and Green’s function 16
3.1.3 Green’s function and cross-correlation 16
3.1.4 Selecting dividing windows 17
3.2 COMPARING DIFFERENT METHODS 18
CHAPTER 4 SOURCES OF AMBIENT NOISE 21
4.1 NOISE SOURCE STUDIES 21
4.2 SINGLE STATION NOISE POWER 24
4.3 INTER-STATION CCF ENERGY 28
CHAPTER 5 GROUP AND PHASE VELOCITY TOMOGRAPHY 33
5.1 GROUP VELOCITY 33
5.2 MUTI-SCALE WAVELET INVERSION 35
5.2.1 Inversion theory 35
5.2.2 Trade-off curve 38
5.3 PHASE VELOCITY 39
5.3.1 Method 39
5.3.2 Land station dataset 42
5.4 2-D RAYLEIGH WAVES ANISOTROPY 45
5.5 SENSITIVITY KERNEL 47
5.6 2-D ANISOTROPIC PHASE VELOCITY MAPS 50
5.7 RESOLUTION TEST 51
CHAPTER 6 CONCLUSION 58
REFERENCES 59
dc.language.isoen
dc.subject周遭噪訊法zh_TW
dc.subject海底地震儀zh_TW
dc.subject多重尺度小波層析成像zh_TW
dc.subject非均向性zh_TW
dc.subject周遭噪訊法zh_TW
dc.subject海底地震儀zh_TW
dc.subject多重尺度小波層析成像zh_TW
dc.subject非均向性zh_TW
dc.subjectAmbient seismic noiseen
dc.subjectSeismic anisotropyen
dc.subjectAmbient seismic noiseen
dc.subjectmultiscale wavelet inversionen
dc.subjectHuatung Basinen
dc.subjectOcean bottom seismometeren
dc.subjectmultiscale wavelet inversionen
dc.subjectHuatung Basinen
dc.subjectOcean bottom seismometeren
dc.subjectSeismic anisotropyen
dc.title台灣東岸及外海海底地震儀周遭噪訊分析:噪訊來源及岩石圈構造速度逆推zh_TW
dc.titleAmbient seismic noise analysis: Origin of noise source and tomographic inversion for lithospheric velocity structure offshore eastern Taiwanen
dc.typeThesis
dc.date.schoolyear104-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭本垣(Ban-Yuan Kuo),梁文宗(Wen-Tzong Liang),喬凌雲(Ling-Yun Chiao),龔源成(Yuan-Cheng Gung)
dc.subject.keyword周遭噪訊法,海底地震儀,多重尺度小波層析成像,非均向性,zh_TW
dc.subject.keywordAmbient seismic noise,Seismic anisotropy,Ocean bottom seismometer,Huatung Basin,multiscale wavelet inversion,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201601005
dc.rights.note有償授權
dc.date.accepted2016-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
6.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved